Комплексный обзор: кабельные вводы

Промышленное оборудование

Современный мир невозможно представить себе без различных электроприборов. Они облегчают наш труд, помогают автоматизировать некоторые процессы, следят за различными показателями в режиме реального времени. Сердце любого прибора — печатная плата, с расположенными на ней электронными компонентами, разъемами и модулями, которые восприимчивы к механическому воздействию и окружающей среде. Для их защиты используется герметичный корпус, а для внешних герметичных подключений — кабельные вводы.

Распределительная коробка с кабельным вводом

Распределительная коробка с подключенными кабельными вводами

Содержание

Составные части

Составляющие кабельного ввода:

  • корпус,
  • лепестковый зажима кабеля,
  • кабельный уплотнитель,
  • накидная гайка,
  • уплотнитель резьбы
  • ответная гайка.

Уплотнители обеспечивают необходимую степень защиты от проникновения влаги твердых частиц. Накидная гайка фиксирует кабель с помощью лепесткового зажима. Ответной гайкой гермоввод зажимают на корпусе устройства или просто вкручивают, в том случае, если в корпусе выполнено отверстие с резьбой.

кабельный ввод в разрезе

Основные параметры

Основным параметром является сечение зажимаемого кабеля. Существуют вводы под тонкий кабель (1-3мм), так и под кабель большого диаметра (до 70мм). Следующий важный параметр — степень защиты от проникновения (пыле-влагозащита). Бывает в интервале IP54 (без защиты от внешних воздействий) — IP68 (защита от струи воды на глубине до 1 метра). Из электромеханическких характеристик основные: выдерживаемая разность давлений, без потери герметичности (обычно до 5Бар) и диапазон рабочих температур (в зависимости от материала изготовления и типа гермоввода бывает от −60 до +100С)

Тип резьбы кабельного ввода:

  • M — Метрическая резьбы, стандартно M12-M63 ( но есть серии с нестандартными размерами резьбы от M6 до M100
  • PG — Дюймовая резьба, стандартно PG7 — PG48
  • NPT — Трубная резьба, стандартно от 1/2’’ до 4«

Ассортимент

Сегодня ассортимент кабельных вводов, сальников и гермовводов обширен и насчитывает сотни моделей и тысячи модификаций.

Пластиковые кабельные вводы

Самые распространенные — стандартные пластиковые вводы. Материал изготовления таких вводов — полиамид 6. Также кабельный ввод может быть выполнен из огнеупорного полиамида 6 , сертифицированного по классу пожаробезопасности V0-UL94. Кабельный уплотнитель выполнен из TPV (Термопластичные вулканизаты), уплотнитель резьбы — резиновое колечко NBR (Бутадиен-нитрильный каучук) круглого или плоского сечения.

пластиковые кабельные вводы

Подборка пластиковых гермовводов Ortac

На внутренней стороне накидной гайки могут быть выполнены специальные насечки, предотвращающие откручивание от вибрационных нагрузок. Такие вводы способны обеспечить высокую степень защиты до IP68, защиту от масел, щелочей.

Металлические кабельные вводы

По конструкции стандартные металлические вводы не отличаются от пластиковых. Корпус кабельного ввода и накидной гайки изготовлен из металла:

  • Никелированная латунь Марки MS58 (латунь 58%, цинк 52%) / MS63 (латунь 63%, цинк 37%)
  • Нержавеющая сталь . Используется серия ASIS 300 (Хромникелевая нержавейка, самая универсальная). Также применяют серию ASIS 400 (нержавейка с высоким содержанием хрома — сохраняет свои свойства в коррозионно опасных и серосодержащих средах, устойчива к резким перепадам температуры)

металлические кабельные вводы

Металлические кабельные вводы и аксессуары

Обычно уплотнители металлических кабельный вводов — это NBR и TPV, но есть серии металлических вводов с силиконовым уплотнителем. Стандартно в металлическом кабельном вводе применяют лепестковый зажим из полиамида 6.

Разновидности и типы кабельных вводов

кабельный ввод с глухой резинкой С глухой резинкой (только пластиковые) — кабельный ввод оснащен пластиковой мембраной (прокладкой) и может сохранять герметичность корпуса без протянутого кабеля. Для монтажа кабеля потребуется лишь проткнуть прокладку.
С защитой провода (пластиковые и металлические) — вводы со спиральной защитой кабеля от излома. Накидная гайка выполнена со спиралью на конце. Данные вводы применяют в приборах, испытывающих вибрационные нагрузки или механическое воздействие для дополнительной защиты кабеля от излома.
мультиотверстный гермоввод Мультиотверстные(пластиковые и металлические) — применяются в случае, если необходимо протянуть через гермоввод несколько проводов маленького сечения. Диапазон сечений проводов — от 3 до 9мм. Обеспечивают защиту — IP65 (пыленепроницаемые, защита от струи воды)
Вводы под плоский кабель(пластиковые и металлические) — применяется для ввода плоского кабеля в герметичный корпус, ширина кабеля может быть от 13 до 45мм, высота от 7 до 14мм. Обеспечивают защиту — IP65
кабельный ввод с плоской гайкой С плоской гайкой (пластиковые и металлические) — для менее ответственных применений существует серия кабельных вводов с плоской гайкой. Без уплотнителя резьбы кабельный ввод обеспечивает защиту IP54, с уплотнителем — IP65.
сальник с зажимом на провод С зажимом на провод(только металлические) — Существует и серия металлических кабельный вводов с зажимом. Эту серию можно использовать, чтобы защитить кабель от перемещений при механических воздействиях.
EMC кабельные вводы EMC вводы (только металлические). — Для экранированных кабелей существует специально разработанная серия EMC кабельных вводов. Данная серия предназначена для электромагнитного экранирования кабельного ввода путем заземления на экранирующую оплетку кабеля. Заземление обеспечивается специальными лепестками гермоввода, которые надежно зажимают оплетку кабеля.
Вводы увеличенного диаметра Экстра-большого сечения (только металлические) — Для очень больших сечений кабеля существует серия металлических гермовводов экстра-больших размеров от M63×1,5 до M90×2,0
гермовводы - мини Мини-кабельные вводы — Для применений в ограниченных пространствах можно использовать кабельные вводы серии мини. Диапазон размеров серии — от M6×1,0 до M12×1,5. Диапазон сечений кабеля от 2 до 8мм. Обеспечивает IP68 и может комплектоваться, помимо стандартных, уплотнителями EPDM или силиконовыми уплотнителями.
вентиляционные вводы Вентиляционные кабельные вводы — линейка сальников для выравнивания давления в герметичных корпусах и защиты от образования конденсата. Модели имеют отверстия на корпусе и гидрофобную мембрану внутри. Подобный конструктив обеспечивает воздухообмен, но не пропускает влагу, тем самым сохраняя IP68 всего устройства.
вводы с силиконовым уплотнителем Вводы с силиконовым уплотнителем (только металлические) — комплектуются прокладкой из силикона, что обеспечивает более широкий температурный диапазон работы кабельного ввода при сохранении IP68: от −60 до +200 С
вводы с защитой от микроорганизмов Вводы с защитой от микроорганизмов (только металлические) выполнены в соответствии с директивой департамента здравоохранения США об «экспулатации оборудования в медицинском и пищевом оборудовании». Конструктив вводов затрудняет их загрязнение и облегчает очистку, а специальная мембрана (TPE) препятствует попаданию микробов и бактерий внутрь устройства

Взрывозащищенные вводы (Ex)

Отдельная категория металлических вводов для применения во взрывоопасных зонах. Ключевое назначение гермоввода в таких условиях — не защитить от взрыва, как может показаться на первый взгляд, а препятствовать проникновению легковоспламеняющихся газов в устройство. Гермоввод не должен допускать утечку газа между уплотнителем и оболочкой кабеля. Состоит из корпуса, накидной гайки, одного или двух кабельных уплотнителей, резьбового уплотнителя и ответной гайки.

Взрывозащищенные вводы

Взрывозащищенные вводы EX и акссесуары

В Российской практике взрывоопасные зоны делят на несколько видов в зависимости присутствия в этой зоне легко воспламеняющего вещества или пыли, образующей вместе с воздухом взрывоопасную смесь.

Зона 0 (Зона 20) Взрывоопасный газ (пыль) присутствует постоянно или втечение продолжительного времени

Зона 1 (Зона 21) — Взрывоопасный газ (пыль) постоянно не присутствует, но существует вероятность его появления в условиях нормального режима эксплуатации

Зона 2 (Зона 22) — Взрывоопасный газ (пыль) может появиться только в результате ошибок эксплуатации оборудования или поломки и присутствует непродолжительное время

ex-зоны

Разновидности

  • Кабельный ввод под бронированный провод с двойным уплотнителем
  • Кабельный ввод под бронированный провод с одним уплотнителем
  • Кабельный ввод под небронированный провод стандартный
  • Кабельный ввод под небронированный провод для трубных систем
  • Кабельный ввод под бронированный провод с плоской гайкой.

Для эксплуатации вводов во взрывозащищенных условиях они должны быть сертифицированы по международным (стандарт ATEX) и Российским (соответствие техническому регламенту ТР ТС 012/2011) требованиям.

Автоматизированная система управления

Автоматизированная система управления или АСУ — комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин «автоматизированная», в отличие от термина «автоматическая» подчёркивает сохранение за человеком-оператором некоторых функций, либо наиболее общего, целеполагающего характера, либо не поддающихся автоматизации. АСУ с Системой поддержки принятия решений (СППР), являются основным инструментом повышения обоснованности управленческих решений.

Создателем первых АСУ в СССР является доктор экономических наук, профессор, член-корреспондент Национальной академии наук Белоруссии, основоположник научной школы стратегического планирования Николай Иванович Ведута (1913—1998) [1] [2] [3] [4] . В 1962—1967 гг. в должности директора Центрального научно-исследовательского института технического управления (ЦНИИТУ), являясь также членом коллегии Министерства приборостроения СССР, он руководил внедрением первых в стране автоматизированных систем управления производством на машиностроительных предприятиях. Активно боролся против идеологических PR-акций по внедрению дорогостоящих ЭВМ, вместо создания настоящих АСУ для повышения эффективности управления производством.

Важнейшая задача АСУ — повышение эффективности управления объектом на основе роста производительности труда и совершенствования методов планирования процесса управления. Различают автоматизированные системы управления объектами (технологическими процессами — АСУТП, предприятием — АСУП, отраслью — ОАСУ) и функциональные автоматизированные системы, например, проектирование плановых расчётов, материально-технического снабжения и т.д.

Цели автоматизации управления

В общем случае, систему управления можно рассматривать в виде совокупности взаимосвязанных управленческих процессов и объектов. Обобщенной целью автоматизации управления является повышение эффективности использования потенциальных возможностей объекта управления. Таким образом, можно выделить ряд целей:

  1. Предоставление лицу, принимающему решение (ЛПР) релевантных данных для принятия решений
  2. Ускорение выполнения отдельных операций по сбору и обработке данных
  3. Снижение количества решений, которые должно принимать ЛПР
  4. Повышение уровня контроля и исполнительской дисциплины
  5. Повышение оперативности управления
  6. Снижение затрат ЛПР на выполнение вспомогательных процессов
  7. Повышение степени обоснованности принимаемых решений

Жизненный цикл АС

Стандарт ГОСТ 34.601-90 предусматривает следующие стадии и этапы создания автоматизированной системы:

  1. Формирование требований к АС
    1. Обследование объекта и обоснование необходимости создания АС
    2. Формирование требований пользователя к АС
    3. Оформление отчета о выполнении работ и заявки на разработку АС
  2. Разработка концепции АС
    1. Изучение объекта
    2. Проведение необходимых научно-исследовательских работ
    3. Разработка вариантов концепции АС и выбор варианта концепции АС, удовлетворяющего требованиям пользователей
    4. Оформление отчета о проделанной работе
  3. Техническое задание
    1. Разработка и утверждение технического задания на создание АС
  4. Эскизный проект
    1. Разработка предварительных проектных решений по системе и ее частям
    2. Разработка документации на АС и ее части
  5. Технический проект
    1. Разработка проектных решений по системе и ее частям
    2. Разработка документации на АС и ее части
    3. Разработка и оформление документации на поставку комплектующих изделий
    4. Разработка заданий на проектирование в смежных частях проекта
  6. Рабочая документация
    1. Разработка рабочей документации на АС и ее части
    2. Разработка и адаптация программ
  7. Ввод в действие
    1. Подготовка объекта автоматизации
    2. Подготовка персонала
    3. Комплектация АС поставляемыми изделиями (программными и техническими средствами, программно-техническими комплексами, информационными изделиями)
    4. Строительно-монтажные работы
    5. Пусконаладочные работы
    6. Проведение предварительных испытаний
    7. Проведение опытной эксплуатации
    8. Проведение приемочных испытаний
  8. Сопровождение АС.
    1. Выполнение работ в соответствии с гарантийными обязательствами
    2. Послегарантийное обслуживание

Эскизный, технический проекты и рабочая документация — это последовательное построение все более точных проектных решений. Допускается исключать стадию «Эскизный проект» и отдельные этапы работ на всех стадиях, объединять стадии «Технический проект» и «Рабочая документация» в «Технорабочий проект», параллельно выполнять различные этапы и работы, включать дополнительные.

Данный стандарт не вполне подходит для проведения разработок в настоящее время: многие процессы отражены недостаточно, а некоторые положения устарели.

Состав АСУ

В состав АСУ входят следующие виды обеспечений: информационное, программное, техническое, организационное, метрологическое, правовое и лингвистическое.

Основные классификационные признаки

Основными классификационными признаками [5] , определяющими вид АСУ, являются:

  • сфера функционирования объекта управления (промышленность, строительство, транспорт, сельское хозяйство, непромышленная сфера и т.д.)
  • вид управляемого процесса (технологический, организационный, экономический и т.д.);
  • уровень в системе государственного управления, включения управление народным хозяйством в соответствии с действующими схемами управления отраслями (для промышленности: отрасль (министерство), всесоюзное объединение, всесоюзное промышленное объединение, научно-производственное объединение, предприятие (организация), производство, цех, участок, технологический агрегат).

Функции АСУ

Функции АСУ [5] устанавливают в техническом задании на создание конкретной АСУ на основе анализа целей управления, заданных ресурсов для их достижения, ожидаемого эффекта от автоматизации и в соответствии со стандартами, распространяющимися на данный вид АСУ. Каждая функция АСУ реализуется совокупностью комплексов задач, отдельных задач и операций. Функции АСУ в общем случае включают в себя следующие элементы (действия):

  • планирование и (или) прогнозирование;
  • учет, контроль, анализ;
  • координацию и (или) регулирование.

Необходимый состав элементов выбирают в зависимости от вида конкретной АСУ. Функции АСУ можно объединять в подсистемы по функциональному и другим признакам.

Функции при формировании управляющих воздействий

  • Функции обработки информации (вычислительные функции) – осуществляют учет, контроль, хранение, поиск, отображение, тиражирование, преобразование формы информации;
  • Функции обмена (передачи) информации – связаны с доведением выработанных управляющих воздействий до ОУ и обменом информацией с ЛПР;
  • Группа функций принятия решения (преобразование содержания информации) – создание новой информации в ходе анализа, прогнозирования или оперативного управления объектом

Классы структур АСУ

В сфере промышленного производства с позиций управления можно выделить следующие основные классы струк­тур систем управления: децентрализованную, централизованную, централизованную рассредоточенную и иерархическую.

Децентрализованная структура

Построение си­стемы с такой структурой эффективно при автоматизации техно­логически независимых объектов управления по материальным, энергетическим, информационным и другим ресурсам. Такая система представляет собой совокупность нескольких независи­мых систем со своей информационной и алгоритмической базой.

Для выработки управляющего воздействия на каждый объект управления необходима инфор­мация о состоянии только этого объекта.

Централизованная структура

Централизованная структура осуществляет реа­лизацию всех процессов уп­равления объектами в едином органе управления, который осуществляет сбор и обработку информации об управляемых объектах и на основе их анали­за в соответствии с критериями системы вырабатывает управ­ляющие сигналы. Появление этого класса структур связано с увеличением числа контроли­руемых, регулируемых и уп­равляемых параметров и, как правило, с территориальной рассредоточенностью объекта управления.

Достоинствами централизованной структуры являются достаточно простая реализация процессов информационного взаимодей­ствия; принципиальная возможность оптимального управления системой в целом; достаточно легкая коррекция оперативно изменяемых входных параметров; возможность достижения максимальной эксплуатационной эффективности при минимальной избы­точности технических средств управления.

Недостатки централизованной структуры следующие: необхо­димость высокой надежности и производительности технических средств управления для достижения приемлемого качества упра­вления; высокая суммарная протяженность каналов связи при наличии территориальной рассредоточенности объектов упра­вления.

Централизованная рассредоточенная структура

Основная особенность данной структуры — сохранение принципа централизованного управления, т.е. выработка управляющих воздействий на каждый объект управления на основе информации о состояниях всей совокупности объектов управления. Некоторые функциональные устройства системы управления являются об­щими для всех каналов системы и с помощью коммутаторов под­ключаются к индивидуальным устройствам канала, образуя замкнутый контур управления.

Алгоритм управления в этом случае состоит из совокупности взаимосвязанных алгоритмов управления объектами, которые реализуются совокупностью взаимно связанных органов упра­вления. В процессе функционирования каждый управляющий орган производит прием и обработку соответствующей информа­ции, а также выдачу управляющих сигналов на подчиненные объекты. Для реализации функций управления каждый локаль­ный орган по мере необходимости вступает в процесс информа­ционного взаимодействия с другими органами управления. До­стоинства такой структуры: снижение требований, к производи­тельности и надежности каждого центра обработки и управления без ущерба для качества управления; снижение суммарной про­тяженности каналов связи.

Недостатки системы в следующем: усложнение информацион­ных процессов в системе управления из-за необходимости обмена данными между центрами обработки и управления, а также корректировка хранимой информации; избыточность техниче­ских средств, предназначенных для обработки информации; сложность синхронизации процессов обмена информацией.

Иерархическая структура

С ростом числа задач управления в сложных системах значительно увеличивается объем переработанной информации и повышается сложность алгоритмов управления. В результате осуществлять управление централизо­ванно невозможно, так как имеет место несоответствие между сложностью управляемого объекта и способностью любого упра­вляющего органа получать и перерабатывать информацию.

Кроме того, в таких системах можно выделить, следующие, группы задач, каждая из которых характеризуется соответствующими требованиями по времени реакции на события, происхо­дящие в управляемом процессе:

задачи сбора данных с объекта управления и прямого цифрового управления (время реакции , секунды, доли секунды);

задачи экстремального управления, связанные с расчётами желаемых параметров управляемого процесса и требуемых значений уставок регуляторов, с логиче­скими задачами пуска и остановки агрегатов и др. (время реак­ции — секунды, минуты);

задачи оптимизации и адаптивного управления процессами, технико-экономические задачи (время реакции — несколько секунд);

информационные задачи для адми­нистративного управления, задачи диспетчеризации и координа­ции в масштабах цеха, предприятия, задачи планирования и др. (время реакции — часы).

Очевидно, что иерархия задач управления приводит к необхо­димости создания иерархической системы средств управления. Такое разделение, позволяя справиться с информационными трудностями для каждого местного органа управления, порождает необходимость согласования принимаемых этими органами реше­ний, т. е. создания над ними нового управляющего органа. На каждом уровне должно быть обеспечено максимальное соот­ветствие характеристик технических средств заданному классу задач.

Кроме того, многие производственные системы имеют соб­ственную иерархию, возникающую под влиянием объективных тенденций научно-технического прогресса, концентрации и спе­циализации производства, способствующих повышению эффектив­ности общественного производства. Чаще всего иерархическая структура объекта управления не совпадает с иерархией системы управления. Следовательно, по мере роста сложности систем выстраивается иерархическая пирамида управления.

Управляе­мые процессы в сложном объекте управления требуют своевремен­ного формирования правильных решений, которые приводили бы к поставленным целям, принимались бы своевременно, были бы взаимно согласованы. Каждое такое решение требует постановки соответствующей задачи управления. Их совокупность образует иерархию задач управления, которая в ряде случаев значительно сложнее иерархии объекта управления.

Виды АСУ

  • Автоматизированная система управления технологическим процессом или АСУ ТП  — решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте
  • Автоматизированная система управления производством (АСУ П) — решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса. Для решения этих задач применяются MIS и MES-системы, а также LIMS-системы.

Примеры:

    • Автоматизированная система управления уличным освещением («АСУ УО») — предназначена для организации автоматизации централизованного управления уличным освещением.
    • Автоматизированная система управления наружного освещения («АСУНО») — предназначена для организации автоматизации централизованного управления наружным освещением.
    • Автоматизированная система управления дорожным движением или АСУ ДД — предназначена для управления транспортных средств и пешеходных потоков на дорожной сети города или автомагистрали
  • Автоматизированная система управления предприятием или АСУП  — Для решения этих задач применяются MRP,MRP II и ERP-системы. В случае, если предприятием является учебное заведение, применяются системы управления обучением.

Примеры:

  • «Система управления гостиницей». Наряду с этим названием употребляется PMS Property Management System
  • «Автоматизированная система управления операционным риском» — это программное обеспечение, содержащее комплекс средств, необходимых для решения задач управления операционными рисками предприятий: от сбора данных до предоставления отчетности и построения прогнозов.

Понятие автоматизированной системы управления

Автоматизированная система управления (АСУ) – сочетание комплекса программно-аппаратных средств и персонала, которые предназначены для управления различными процессами в масштабе технологического процесса, производства, предприятия.

АСУ применяют в энергетике, различных отраслях промышленности, транспорта и т.п. Автоматизированная система отличается от автоматической сохранением функций (например, не поддающихся автоматизации), которые должен выполнять человек (оператор).

В СССР первые АСУ были разработаны доктором экономических наук, профессором, член-корреспондентом НАН Белоруссии Н.И. Ведутой. В 1962–1967 годах он был руководителем внедрения первых в стране АСУ производством на машиностроительных предприятиях.

Первостепенной задачей АСУ является повышение эффективности управления объектом через рост производительности труда и совершенствование методов планирования процесса управления.

Цели автоматизации управления

Система управления может рассматриваться как совокупность взаимосвязанных управленческих процессов и объектов. В самом общем виде автоматизация управления выполняется для повышения эффективности использования потенциальных возможностей объекта управления. Выделяют ряд целей автоматизации управления:

Состав АСУ

АСУ состоит из:

  • информационного обеспечения;
  • программного обеспечения;
  • технического обеспечения;
  • организационного обеспечения;
  • метрологического обеспечения;
  • правового обеспечения;
  • лингвистического обеспечения.

Основные классификационные признаки

АСУ могут быть классифицированы по:

  • сфере функционирования объекта управления (например, промышленность, сельское хозяйство, строительство, транспорт, непромышленная сфера и т.д.)
  • виду процесса, которым управляют (экономический, технологический, организационный и т.д.);
  • уровню в системе государственного управления (отрасль (министерство), все виды объединений, предприятие (организация), производство, цех, участок, технологический агрегат).

Функции АСУ

Функции АСУ устанавливаются в техническом задании создания определенной АСУ опираясь на анализ целей управления, конкретные ресурсы для их достижения, ожидаемый эффект от автоматизации и в соответствии со стандартами, которые распространяются на данный вид АСУ. Функции АСУ состоят в:

  • планировании и (или) прогнозировании;
  • учете, контроле, анализе;
  • координации и (или) регулировании.

Замечание 1

Необходимый набор действий выбирается в зависимости от вида создаваемой АСУ. Функции АСУ могут объединяться в подсистемы по различным признакам.

Функции при формировании управляющих действий:

  • вычислительные функции (обработка информации) – функции осуществления учета, контроля, хранения, поиска, отображения, тиражирования, преобразования формы информации;
  • функции обмена (передачи) информацией – доведение выработанных управляющих воздействий до объекта управления и обменом информацией с лицом, принимающим решение;
  • функции принятия решения – функции создания новой информации в ходе анализа, прогнозирования или оперативного управления объектом.

Виды АСУ

  • АСУ технологическими процессами (АСУ ТП) – предназначена для решения задач оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте.
  • Автоматизация умственного труда – предназначена для облегчения умственного труда человека с помощью вычислительной техники.
  • АСУ производством (АСУ П) – предназначена для решения задач организации производства, в том числе основных производственных процессов, входящей и исходящей логистики. Выполняет краткосрочное планирование выпуска с учетом мощностей производства, анализ качества продукции, моделирование производственного процесса.
  • функциональные АСУ (например, проектирование плановых расчётов, материально-технического снабжения и т.д.).

Виды АСУ. Автор24 — интернет-биржа студенческих работ

Что такое АСУ, назначение, характеристика и структурная схема

АСУ – аббревиатура, которая расшифровывается как Автоматизированные Системы Управления. Ответ на вопрос, что такое АСУ, можно сформулировать следующим образом: это совокупность технических систем и процессов, организационных комплексов и научных методов, которые позволяют обеспечить оптимальное управление сложным техническим процессом или объектом, а также коллективом людей, который имеет одну единую цель.

Структурная схема АСУ

В структуре любой автоматизированной системы управления можно выделить следующие компоненты:

  1. Основная часть – включает в себя математическое и информационное обеспечение и техническую часть.
  2. Функциональна часть – подразумевает конкретные управленческие функции и ряд взаимосвязанных программ.

Системы могут быть элементарными или масштабными и сложными.

Это интересно: какие бывают творческие профессии, современные виды и особенности.

Принято различать две структурные разновидности таких систем — автоматизированная система управления техническим процессом (АСУТП) и система организационного управления (АСОУ).

Автоматизированная система управления - зачем они нужны
Различия среди этих систем заключаются в характеристиках объекта, которым система будет управлять. АСУТП выстраиваются для управления сложными техническими объектами, механизмами, аппаратами, машинами. АСОУ призваны контролировать функционирование коллективы людей. Соответственно применению АСУ, будут различаться и способы передачи информации – это могут быть документы или разнообразные физические сигналы.

Существует также аббревиатура САУ – система автоматического управления. Её особенность заключается в том, что она некоторое время может действовать без вмешательства человека. Применяются такие системы для управления отельными небольшими объектами.

Применение и основные функции АСУ

АСУ нашли широкое применение в разнообразных сферах промышленного производства. Основные функции систем сводятся к следующему:

  1. Автоматизация управления технологическим процессом. Благодаря действию контроллера системы оптимизируется взаимодействие всех компонентов, происходит экономия топлива и энергии, улучшаются другие показатели процесса.
  2. Сбор, регистрация, обработка и выдача информационных данных, касающихся оборудования и процесса в целом. Информация собирается с датчиков системы контроллером и отображается в форме мнемосхемы.
  3. Распознавание и регистрация аварийных ситуаций и любых отклонений от процесса. При возникновении экстремальной ситуации система даёт сигнал оператору или производит устранение неполадок автоматически, чтобы предотвратить развитие аварии.
  4. Предоставление необходимой информации оператору в виде графических и числовых данных. Информационные данные можно вывести на экран монитора в виде таблиц, графиков, схем. При необходимости эти данные можно распечатать с помощью соответствующих устройств.
  5. Управление автоматически или с рабочего места оператора.
  6. Регистрация всех действий оператора и сохранение их в заархивированном виде в базах данных. Все данные имеют строгую хронологическую привязку, что позволяет при необходимости установить причину возникновения аварийной ситуации и сделать соответствующие выводы.
  7. Многоуровневая защита информации с помощью парольных систем. Доступ к данным такой автоматизированной системы обычно бывает строго ограничен и предоставляется только специально подготовленным сотрудникам с высшим техническим образованием. Кроме того, предоставляется доступ определённого уровня руководителю и действующим операторам. Для каждого сотрудника вводится индивидуальный пароль, который даёт ему полную ответственность за проведение технологического процесса. Руководитель получает доступ к информации в режиме просмотра.

Основные принципы АСУ

Впервые принципы действия автоматизированных систем управления, порядок их разработки и создания были сформулированы В.М. Глушковым.

  1. Принцип новых задач. Назначение АСУ – решение новых управленческих задач, а не механизация системы управления как таковая. Конкретный состав таких задач зависит от конкретного объекта, который подлежит управлению. Если речь идёт о системе автоматизированного управления целой отраслью промышленности, на первый план выходит задача согласования синхронизации работы всех задействованных звеньев, перспективы и планирование.
  2. Принцип системного подхода. Проектировка АСУ основывается на системном подходе как к анализу объекта, так и к процессам управления. В этом случае глубокому системному анализу подлежат не только технические вопросы, но и экономические, и организационные. Таким образом, внедрение АСУ предоставляет возможность оптимизировать экономические и производственные показатели.
  3. Принцип первого руководителя. Вся разработка и утверждение требований к системе, а также процесс внедрения её на практике относятся к сфере компетенции основного руководителя объекта – например, министра или директора предприятия.
  4. Принцип непрерывного развития. Математическое и программное обеспечение автоматизированной системы управления должно быть выстроено таким образом, чтобы при необходимости можно было легко внести изменения в системные процессы и критерии управления.
  5. Принцип единства информационной базы. На автоматических носителях постоянно происходит накопление и обновление информации, которая необходима как для решения отдельных узких задач, так и для проведения управленческого процесса в целом. При этом нецелесообразное дублирование каких-либо данных в системе исключается. Обработка информации должна производиться таким образом, чтобы любая вновь поступающая информация о каких-либо изменениях в кратчайшие сроки вводилась в базу данных и обрабатывалась оптимальным образом.
  6. Принцип комплексности задач и рабочих программ. Практически все технические и программные процессы взаимосвязаны между собой, поэтому не могут рассматриваться как отдельно существующие единицы. Попытка решать такие задачи по отдельности может привести к существенному снижению эффективности процесса в целом.
  7. Принцип типовой разработки. При разработке конкретной автоматизированной системы очень важно, чтобы она оказалась подходящей для максимального количества целей и была востребована многими заказчиками. Каждая система должна быть до определённых пределов типизирована, но при этом не приводить к усложнению решений для потребителя.

Информационная база АСУ

Информационной базой АСУ можно назвать всю совокупность информации, размещённой на машинных носителях и необходимых для нормального функционирования системы.

Как правило, вся информационная база подразделяется условно на три сектора – генеральный, производный и оперативный.

  1. Генеральный сектор объединяет в себе все данные, которые являются общими для всех поставленных задач. Размещение таких данных не ориентируется на выполнение какой-либо одной управленческой функции. Если объект достаточно крупный, генеральный сектор может содержать значительные объёмы и занимать много места на запоминающих устройствах, что не всегда удобно. Особенную сложность в этом случае может вызвать мультипрограммная обработка наряду с недостаточно мощными техническими средствами. В генеральном секторе обязательно должны отражаться все устойчивые изменения в работе системы.
  2. Производный сектор призван решить указанную выше задачу. Он отражает специфику конкретного объекта, особенности функций, которые выполняются в каждый конкретный отрезок времени и целый ряд других показателей системы. Любой производный сектор формируется из генерального сектора.
  3. Для обработки текущей информации и фиксации промежуточных результатов предусмотрен оперативный сектор. Здесь же можно обнаружить первичная вводная информация об обслуживаемом объекте. Эти данные могут поступать по каналам связи или содержаться на съёмных носителях. Далее данные могут переноситься в производный и генеральный секторы.Как АСУ объединяют с другими системами

Технические характеристики АСУ

Под технической базой АСУ принято понимать все технические средства, которые применяют для сбора, накопления и обработки информации, а также для её отображения и передачи. Сюда же можно отнести и исполнительные узлы системы, которые воздействуют на объект управления.

Основные технические элементы и оборудование АСУ – это электронно-вычислительная техника, которая обеспечивает накопление и обработку всех данных, циркулирующих внутри системы. Такая техника позволяет моделировать производственные процессы и строить предложения для управления.

Схема АСУ - принципы работы
Для построения и управления АСУ применяются два типа электронно-вычислительной техники — учётно-регулирующий и информационно-расчётный.

Информационно-расчётное оборудование находится на высшей иерархической ступени в управленческой системе. Их задачей является решение всех вопросов, связанных с централизованным управлением объектом. Для таких механизмов характерно высокое быстродействие, наличие системы прерываний, переменная длина слова, слоговая обработка вводных данных.

Нижний уровень системы управления, как правило, отдаётся учётно-регулирующим механизмам и оборудованию. Эти механизмы, как правило, размещаются непосредственно на участках или в производственных цехах. В их задачу входит сбор вводных данных от объектов управления и первичная обработка этой информации с последующей передачей её в информационно-расчётное отделение и получением плановой директивной информации.

Кроме того, учётно-регулирующая часть оборудования занимается локальными расчётами и вырабатывает управляющие воздействия на объекты управления в случае возникновения отклонений от расчётных функций. Эта часть системы управления имеет хорошо развитую связь с большим количеством источников информации и устройств регулирования.

Механические средства сбора и отображения информации

Если системой предусмотрен сбор и обработка информации с участием человека, в неё включаются различные регистраторы, которые позволяют получать исходные данные непосредственно с рабочих мест. Сюда же относятся всевозможные температурные датчики, таймеры, измерители количества произведённых деталей и прочее подобное оборудование. Монтируются также автоматические фиксаторы отклонений в производственном процессе, которые регистрируют и передают в систему сведения об отсутствии материалов, инструментария, транспортных средств для отправки изготовленных продуктов, а также неправильности в работе станков. Подобная аппаратура устанавливается не только в производственных помещениях, но и на складах для хранения сырья и готовой продукции.

К средствам отображения данных относятся все устройства, позволяющие вывести информацию в наиболее доступном для человека виде. Сюда относятся всевозможные мониторы, табло и экраны, печатающие устройства, терминалы, индикаторы и пр. Эти устройства связаны напрямую с центральным процессором вычислительной машины и могут выдавать информацию либо регламентировано, либо эпизодически – по запросу оператора или же в случае возникновения аварийной ситуации.

В состав технической базы автоматизированных систем управления входят также разнообразные виды оргтехники, контрольно-измерительные и учётные приборы, которые обеспечивают нормальное функционирование основных технических узлов.

Строим будущее: от ангаров до уютных домов