Схема, принцип работы, характеристики биполярных транзисторов

Автор: | 02.08.2021

 

Устройство биполярного транзистора.

И, первым делом, мы рассмотрим устройство биполярного транзистора и химические процессы, протекающие в нем. И в этом нам очень поможет статья о p-n переходе (ссылка), поскольку ключевые понятия мы будем использовать те же самые. Ведь транзистор есть ни что иное как три полупроводниковые области, которые формируют между собой два p-n перехода.

Кстати транзистор называется биполярным, потому что в переносе заряда участвуют и дырки, и электроны.

Итак, биполярный транзистор состоит из 3-х полупроводниковых областей. Причем тип примесной проводимости у этих областей чередуется:

  • p-n-p или
  • n-p-n

То есть мы получаем два вида биполярных транзисторов – n-p-n и p-n-p. Давайте дальше все обсуждение строить на примере n-p-n транзисторов, суть для p-n-p будет такой же:

Устройство биполярного транзистора.

Называются эти три полупроводниковые области:

  • эмиттер
  • база
  • коллектор

Тип проводимости эмиттера и коллектора одинаковый, но технологически они отличаются довольно значительно. Во-первых, общая область перехода база-эмиттер намного меньше общей области перехода база-коллектор. Зачем так сделано мы разберемся чуть позже. И, во-вторых, область коллектора содержит намного меньше примесей, чем область эмиттера.

Транзисторы.

Принцип работы биполярного транзистора.

Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь

Принцип работы биполярного транзистора.

В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход – обратное.

Режимы работы биполярного транзистора.

Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.

Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.

В результате получается, что ток коллектора приблизительно равен току эмиттера:

I_к = alpha I_э

Коэффициент alpha численно равен 0.9…0.99. В то же время:

I_э = I_б + I_к

А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили ). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:

I_э = frac{I_к}{alpha}frac{I_к}{alpha} = I_б + I_к

Выражаем ток коллектора через ток базы:

I_к = frac{alpha}{1 – alpha} I_б = beta I_б

Коэффициент beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом и заключается принцип работы биполярного транзистора!

Коэффициент, связывающий величину тока коллектора с величиной тока базы называют коэффициентом увеличения по току и обозначают h_{21}. Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.

Режимы работы биполярного транзистора.

Итак, мы рассмотрели активный режим работы транзистора (переход эмиттер-база открыт, переход коллектор-база закрыт), не обойдем вниманием и другие

Режим отсечки. Оба p-n перехода закрыты. Причем важно отметить, что переход эмиттер-база открывается начиная с некоторого значения приложенного прямого напряжения (не с нуля). Это напряжение обычно составляет около 0.6 В. То есть в режиме отсечки либо оба перехода смещены в обратном направлении, либо коллекторный переход – в обратном, а эмиттерный – в прямом, но величина напряжения не превышает 0.6 В.

В данном режиме переходы сильно обеднены свободными носителями заряда и протекание тока практически полностью прекращается. Исключение составляют только малые побочные токи переходов. В идеальном случае (без токов утечки) транзистор в режиме отсечки эквивалентен обрыву цепи.

Режим насыщения. Оба перехода открыты, и в результате основные носители заряда активно перемещаются из коллектора и эмиттера в базу. В базе возникает избыток носителей заряда, ее сопротивление и сопротивление p-n переходов уменьшается и между эмиттером и коллектором начинает течь ток. В идеальном случае транзистор в таком режиме эквивалентен замыканию цепи.

Барьерный режим. Его мы обязательно еще разберем подробнее, вкратце, идея заключается в том, что база напрямую или через небольшое сопротивление соединена с коллектором. Это эквивалентно использованию диода с последовательно подключенным сопротивлением.

Вот и все самые основные режимы работы биполярного транзистора!

Еще очень многое нам предстоит обсудить в рамках изучения транзисторов, а на сегодня, заканчиваем статью! Спасибо за внимание и ждем вас на нашем сайте снова!

  • Основы электроники. Учебный курс – от простого к сложному.Основы электроники. Учебный курс - от простого к сложному.
  • Биполярный транзистор. Принцип работы на примере…Биполярный транзистор. Принцип работы на примере усилителя с ОЭ.
  • Принцип работы и схема биполярного транзистора.Принцип работы и схема биполярного транзистора.
  • Flash-память. Устройство и принцип работы. NAND и…Flash-память. Устройство и принцип работы. NAND и NOR-память.

Поделиться!

ПодписатьсяСоединить сЯ разрешаю создать мне учетную записьКогда вы первый раз заходите с помощью соцсетей, мы получаем публичную информацию из вашей учетной записи, предоставляемой провайдером услуги соцсети в рамках ваших настроек конфиденциальности. Мы также автоматически получаем ваш e-mail адрес для создания вашей учетной записи на нашем веб сайте. Когда она будет создана, вы будете авторизованы под этой учетной записью.Не согласенСогласенУведомление о новые последующие комментарииновые ответы на мои комментарииLabel
<текстареа id="wc-текстареа-0_0" required="" name="wc_comment" class="wc_comment wpd-field"> {}[+]Имя*Email*Веб-сайтЯ разрешаю создать мне учетную записьКогда вы первый раз заходите с помощью соцсетей, мы получаем публичную информацию из вашей учетной записи, предоставляемой провайдером услуги соцсети в рамках ваших настроек конфиденциальности. Мы также автоматически получаем ваш e-mail адрес для создания вашей учетной записи на нашем веб сайте. Когда она будет создана, вы будете авторизованы под этой учетной записью.Не согласенСогласенLabel
<текстареа id="wc-текстареа-wpdiscuzuniqueid" required="" name="wc_comment" class="wc_comment wpd-field"> {}[+]Имя*Email*Веб-сайт2 комментариев старееновеебольшинство голосов Inline FeedbacksView all comments
Павел

1 год назад

Я уж и забыл что КТ805 выпускались в металлическом корпусе.

1ОтветитьAveal
Aveal
Автор
Reply to 

Павел

1 год назад

0ОтветитьНайти:Vkontakte

Twitter
SignIn
SignUp

Profile
Profile
Profile
Profile
Profile

Язык сайта

Язык сайтаРусскийEnglish

Рубрики

  • Raspberry Pi
  • Датчики
  • Математические методы
  • Микроконтроллеры
    • AVR
    • MSP430
    • STM32
  • Нейронные сети
  • Программирование
    • Qt
  • Разное
  • Учебные курсы
    • STM32 с нуля
    • STM32CubeMx
    • Основы электроники
    • Уроки OpenGL
  • Электроника
    • Altium Designer

Свежие записи

  • Автозапуск python скрипта на Raspberry Pi.
  • Интерфейс Ethernet. Обзор и описание технологии Ethernet.
  • Raspberry Pi и Qt. Кросс-компиляция Qt и установка Qt Creator.
  • Генерация и использование SSH-ключа на Raspberry Pi.
  • Raspberry Pi. PWM. Генерация ШИМ-сигнала.

Свежие комментарии

  • Aveal к записи Raspberry Pi и Qt. Кросс-компиляция Qt и установка Qt Creator.
  • Александр к записи Raspberry Pi и Qt. Кросс-компиляция Qt и установка Qt Creator.
  • Aveal к записи Raspberry Pi и Qt. Кросс-компиляция Qt и установка Qt Creator.
  • Александр к записи Raspberry Pi и Qt. Кросс-компиляция Qt и установка Qt Creator.
  • Aveal к записи Интерфейс Ethernet. Обзор и описание технологии Ethernet.
Июль 2021

ПнВтСрЧтПтСбВс
  1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  

« Июн   

© 2013-2021 MicroTechnics.ru

Конструкция и принцип работы

Ранее вместо транзисторов в электрических схемах использовались специальные малошумящие электронные лампы, но они были больших габаритов и работали за счет накаливания. Биполярный транзистор ГОСТ 18604.11-88 – это полупроводниковый электрический прибор, который является управляемым элементом и характеризуется трехслойной структурой, применяется для управления СВЧ. Может находиться в корпусе и без него. Они бывают p-n-p и n–p–n типа. В зависимости от порядка расположения слоев, базой может быть пластина p или n, на которую наплавляется определенный материал. За счет диффузии во время изготовления получается очень тонкий, но прочный слой покрытия.

принципиальные схемы включения
Фото — мпринципиальные схемы включения

Чтобы определить, какой перед Вами транзистор, нужно найти стрелку эммитерного перехода. Если её направление идет в сторону базы, то структура pnp, если от неё – то npn. Некоторые полярные импортные аналоги (IGBT и прочие) могут иметь буквенное обозначение перехода. Помимо этого бывают еще биполярные комплементарные транзисторы. Это устройства, у которых одинаковые характеристики, но разные типы проводимости. Такая пара нашла применение в различных радиосхемах. Данную особенность нужно учитывать, если необходима замена отдельных элементов схемы.

конструкция
Фото — конструкция

Область, которая находится в центре, называется базой, с двух сторон от неё располагаются эммитер и коллектор. База очень тонкая, зачастую её толщина не превышает пары 2 микрон. В теории существует такое понятие, как идеальный биполярный транзистор. Это модель, у которой расстояние между эммитерной и коллекторной областями одинаковое. Но, зачастую, эммиторный переход (область между базой и эммитером) в два раза больше коллекторного (участок между основой и коллектором).

виды биполярных триодов
Фото — виды биполярных триодов

По виду подключения и уровню пропускаемого питания, они делятся на:

  1. Высокочастотные;
  2. Низкочастотные.

По мощности на:

  1. Маломощные;
  2. Средней мощности;
  3. Силовые (для управления необходим транзисторный драйвер).

Принцип работы биполярных транзисторов основан на том, что два срединных перехода расположены по отношению друг к другу в непосредственной близости. Это позволяет существенно усиливать проходящие через них электрические импульсы. Если приложить к разным участкам (областям) электрическую энергию разных потенциалов, то определенная область транзистора сместится. Этим они очень похожи на диоды.

пример
Фото — пример

Например, при положительном открывается область p-n, а при отрицательном она закрывается. Главной особенностью действия транзисторов является то, что при смещении любой области база насыщается электронами или вакансиями (дырками), это позволяет снизить потенциал и увеличить проводимость элемента.

Существуют следующие ключевые виды работы:

  1. Активный режим;
  2. Отсечка;
  3. Двойной или насыщения;
  4. Инверсионный.

Перед тем, как определить режим работы в биполярных триодах, нужно разобраться, чем они отличаются друг от друга. Высоковольтные чаще всего работают в активном режиме (он же ключевой режим), здесь во время включения питания смещается переход эмиттера, а на коллекторном участке присутствует обратное напряжение. Инверсионный режим – это антипод активного, здесь все смещено прямо-пропорционально. Благодаря этому, электронные сигналы значительно усиливаются.

Во время отсечки исключены все типы напряжения, уровень тока транзистора сведен к нулю. В этом режиме размыкается транзисторный ключ или полевой триод с изолированным затвором, и устройство отключается. Есть еще также двойной режим или работа в насыщении, при таком виде работы транзистор не может выступать как усилитель. На основании такого принципа подключения работают схемы, где нужно не усиление сигналов, а размыкание и замыкание контактов.

Из-за разности уровней напряжения и тока в различных режимах, для их определения можно проверить биполярный транзистор мультиметром, так, например, в режиме усиления исправный транзистор n-p-n должен показывать изменение каскадов от 500 до 1200 Ом. Принцип измерения описан ниже.

Основное назначение транзисторов – это изменение определенных сигналов электрической сети в зависимости от показателей тока и напряжения. Их свойства позволяют управлять усилением посредством изменения частоты тока. Иными словами, это преобразователь сопротивления и усилитель сигналов. Используется в различной аудио- и видеоаппаратуре для управления маломощными потоками электроэнергии и в качестве УМЗЧ, трансформаторах, контроля двигателей станочного оборудования и т. д.

Видео: как работает биполярные транзисторы

 

Проверка

Самый простой способ измерить h21e мощных биполярных транзисторов – это прозвонить их мультиметром. Для открытия полупроводникового триода p-n-p подается отрицательное напряжение на базу. Для этого мультиметр переводится в режим омметра на -2000 Ом. Норма для колебания сопротивления от 500 до 1200 Ом.

Чтобы проверить другие участки, нужно на базу подать плюсовое сопротивление. При этой проверке индикатор должен показать большее сопротивление, в противном случае, триод неисправен.

Иногда выходные сигналы перебиваются резисторами, которые устанавливают для снижения сопротивления, но сейчас такая технология шунтирования редко используется. Для проверки характеристики сопротивления импульсных транзисторов n-p-n нужно подключать к базе плюс, а к выводам эммитера и коллектора — минус.

Технические характеристики и маркировка

Главными параметрами, по которым подбираются эти полупроводниковые элементы, является цоколевка и цветовая маркировка.

цоколевка маломощных биполярных триодов
Фото — цоколевка маломощных биполярных триодов

цоколевка силовых
Фото — цоколевка силовых

Также используется цветовая маркировка.

примеры цветовой маркировки
Фото — примеры цветовой маркировки

таблица цветов
Фото — таблица цветов

Многие отечественные современные транзисторы также обозначаются буквенным шифром, в который включается информация о группе (полевые, биполярные), типе (кремниевые и т. д.,) годе и месяце выпуска.

расшифровка
Фото — расшифровка

Основные свойства (параметры) триодов:

  1. Коэффициент усиления по напряжению тока;
  2. Входящее напряжение;
  3. Составные частотные характеристики.

Для их выбора еще используются статические характеристики, которые включают сравнение входных и выходных ВАХ.

Необходимые параметры можно вычислить, если произвести расчет по основным характеристикам (распределение токов каскада, расчет ключевого режима). Коллекторный ток: Ik=(Ucc-Uкэнас)/Rн

  • Ucc – напряжение сети;
  • Uкэнас – насыщение;
  • Rн – сопротивление сети.

Потери мощности при работе:

P=Ik*Uкэнас

Купить биполярные транзисторы SMD, IGBT и другие можно в любом электротехническом магазине. Их цена варьируется от нескольких центов до десятка долларов, в зависимости от назначения и характеристик.

Конструкционная особенность биполярного транзистора

Для производства биполярного транзистора нужен полупроводник дырочного или электронного типа проводимости, который получают методом диффузии либо сплавления акцепторными примесями. В результате этого с обоих сторон базы образуются области с полярными видами проводимостей.

Биполярные транзисторы  по проводимости бывают двух видов: n-p-n и p-n-p. Правила работы, которым подчинен биполярный транзистор, имеющий n-p-n проводимость (для p-n-p необходимо поменять полярность приложенного напряжения):

  1.  Положительный потенциал на коллекторе имеет большее значение по сравнению с эмиттером.
  2. Любой транзистор имеет свои максимально допустимые параметры Iб, Iк и Uкэ, превышение которых в принципе недопустимо, так как это может привести к разрушению полупроводника.
  3. Выводы  база — эмиттер и база — коллектор функционируют наподобие диодов.  Как правило, диод по направлению база — эмиттер открыт, а по направлению база — коллектор смещен в противоположном  направлении, то есть поступающее напряжение мешает протеканию электрического тока через него.
  4. Если пункты с 1 по 3 выполнены, то ток Iк прямо пропорционален току Iб и  имеет вид: Iк = hэ21*Iб, где hэ21 является коэффициентом усиления по току. Данное правило характеризует главное качество транзистора, а именно то, что малый ток базы оказывает управление мощным током коллектора.

Для разных биполярных транзисторов одной серии показатель  hэ21 может принципиально разниться от 50 до 250. Его величина так же зависит от протекающего тока коллектора, напряжения между эмиттером  и коллектором, и от температуры окружающей среды.

 

Изучим правило №3. Из него вытекает, что напряжение, приложенное между эмиттером и базой не следует значительно увеличивать, поскольку, если напряжение базы будет больше эмиттера на 0,6…0,8 В (прямое напряжение диода), то появится крайне большой ток. Таким образом, в работающем транзисторе напряжения на эмиттере и базе взаимосвязаны по формуле: Uб =Uэ + 0,6В (Uб=Uэ+Uбэ)

Еще раз напомним, что все указанные моменты относятся к транзисторам, имеющим n-p-n проводимость. Для типа p-n-p все следует изменить на противоположное.

Еще следует обратить внимание на то, что ток коллектора не имеет связи с проводимостью диода, поскольку, как правило, к диоду коллектор — база поступает обратное напряжение. В добавок , ток протекающий через коллектор весьма мало зависит от потенциала на коллекторе (данный диод аналогичен малому источнику тока)

Биполярный транзистор принцип работы

При включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.

 

Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу. Таким образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера. Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными.

В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток. Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов.

Физические процессы

Возьмем транзистор типа n-p-n в режиме без нагрузки, когда подключены только два источника постоянных питающих напряжений E1 и E2. На эмиттерном переходе напряжение прямое, на коллекторном – обратное. Соответственно, сопротивление эмиттерного перехода мало и для получения нормального тока достаточно напряжения E1 в десятые доли вольта. Сопротивление коллекторного перехода велико и напряжение E2 составляет обычно десятки вольт.

Соответственно, как и раньше, темные маленькие кружки со стрелками – электроны, красные – дырки, большие кружки – положительно и отрицательно заряженные атомы доноров и акцепторов. Вольт-амперная характеристика эмиттерного перехода представляет собой характеристику полупроводникового диода при прямом токе, а вольт-амперная характеристика коллекторного перехода подобна ВАХ диода при обратном токе.

Принцип работы транзистора заключается в следующем. Прямое напряжение эмиттерного перехода uб-э влияет на токи эмиттера и коллектора и чем оно выше, тем эти токи больше. Изменения тока коллектора при этом лишь незначительно меньше изменений тока эмиттера. Получается, что напряжение на переходе база-эмиттер, т. е. входное напряжение, управляет током коллектора. На этом явлении основано усиление электрических колебаний с помощью транзистора. Основные биполярные транзисторы приведены в таблице ниже.

таблица основных биполярных транзисторов
Таблица характеристик биполярных транзисторов.

 

При увеличении прямого входного напряжения uб-э понижается потенциальный барьер в эмиттерном переходе и, соответственно, возрастает ток через этот переход iэ. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора.Поскольку коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды (на рисунке большие кружки). Между ними возникает электрическое поле, которое способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивают электроны в область коллекторного перехода.

Схема работы и устройства биполярного транзистора.

Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате этого возникает ток базы.

Ток база является бесполезным и даже вредным. Желательно, чтобы он был как можно меньше. Именно поэтому базовую область делают очень тонкой и уменьшают в ней концентрацию дырок. Тогда меньшее число электронов будет рекомбинировать с дырками и, повторюсь, ток базы будет незначительным.

Когда к эмиттерному переходу не приложено напряжение, можно считать, что в этом переходе тока нет. Тогда область коллекторного перехода имеет значительное сопротивление постоянному току, поскольку основные носители зарядов удаляются от этого перехода и по обе границы создаются области, обедненные этими носителями. Через коллекторный переход протекает очень небольшой обратный ток, вызванный перемещением навстречу друг другу неосновных носителей.

Будет интересно➡  Что такое адресная светодиодная лента

Если же под действием входного напряжения возникает значительный ток эмиттера, то в базу со стороны эмиттера инжектируются электроны, для данной области являющиеся неосновными носителями. Они доходят до коллекторного перехода не успевая рекомбинировать с дырками при прохождении через базу.

Чем больше ток эмиттера, тем больше электронов приходит к коллектору, тем меньше становится его сопротивление, следовательно, ток коллектора увеличивается. Аналогичные явления происходят в транзисторе типа p-n-p, надо только местами поменять электроны и дырки, а также полярность источников E1 и E2.

Как устроен транзистор.
Как устроен транзистор.

Помимо рассмотренных процессов существует еще ряд явлений. Рассмотрим модуляцию толщины базы.При повышении напряжения на коллекторном переходе в нем происходит лавинное размножение заряда, обусловленное в основном ударной ионизацией.

Это явление и туннельный эффект могут вызвать электрический пробой, который при возрастании тока может перейти в тепловой пробой. Все происходит также, как у диодов, но в транзисторе при чрезмерном коллекторном токе тепловой пробой может наступить без предварительного электрического пробоя.

Тепловой пробой может наступить без повышения коллекторного напряжения до пробивного. При изменении напряжений на коллекторном и эмиттерном переходах изменяется их толщина, в результате чего изменяется толщина базы.

Что такое биполярный транзистор
Особенно важно учитывать напряжение коллектор-база, поскольку при этом толщина коллектора возрастает, толщина базы уменьшается. При очень тонкой базе может возникнуть эффект смыкания (так называемый “прокол” базы) – соединение коллекторного перехода с эмиттерным. При этом область базы исчезает и транзистор перестает нормально работать.

При увеличении инжекции носителей из эмиттера в базу происходит накопление неосновных носителей заряда в базе, т. е. увеличение концентрации и суммарного заряда этих носителей. А вот при уменьшении инжекции происходит уменьшение концентрации и суммарного заряда этих самых носителей в базе и сей процесс обозвали рассасыванием неосновных носителей зарядов в базе.

И напоследок одно правило: при эксплуатации транзисторов запрещается разрывать цепь базы, если не включено питание цепи коллектора. Надо также включать питание цепи базы, а потом цепи коллектора, но не наоборот.

Схема устройства транзистора.
Схема устройства транзистора.

Биполярные транзисторы

Биполярный транзистор – это полупроводниковый прибор, состоящий из трех чередующихся областей полупроводника с различным типом проводимости (р-п-р или п-р-п) с выводом от каждой области. Рассмотрим работу транзистора n-р-n-типа. Чередующиеся области образуют два р-п-перехода база–эмиттер (БЭ) и база–коллектор (БК).

К переходу БЭ прикладывают прямое напряжение EБЭ, под действием которого электроны n-области эмиттера устремляются в базу, создавая ток эмиттера. Концентрацию примесей в эмиттере делают во много раз больше, чем в базе, а саму базу по возможности тоньше. Поэтому лишь незначительная часть (1–5%) испущенных эмиттером электронов рекомбинирует с дырками базы.

Большая же часть электронов, миновав узкую (доли микрона) область базы, “собирается” коллекторным напряжением Ек, представляющим обратное напряжение для перехода БК, и, устремляясь к плюсу внешнего источника Eк, создает коллекторный ток, протекающий по нагрузке Rн. Электроны, рекомбинировавшие с дырками базы, составляют ток базы IБ.

Ток коллектора, таким образом, определяется током эмиттера за вычетом тока базы. Аналогично работает транзистор р-n-р-типа, отличаясь лишь тем, что его эмиттер испускает в базу не электроны, а дырки, поэтому полярности прикладываемых к нему прямого UЭБ и обратного Ек напряжений должны быть противоположны транзистору п-р-п-типа.

Важное по теме. Как прозвонить транзистор.

На условном обозначении транзисторов стрелка ставится на эмиттере и направлена всегда от р-области к n-области. На рис. 1.8, б приведено условное обозначение транзистора п-р-п, а на рис. 1.9, б – р-п-р. Кружок вокруг транзистора означает, что транзистор изготовлен в самостоятельном корпусе, а отсутствие кружка – что транзистор выполнен заодно с другими элементами на пластинке полупроводника интегральной микросхемы.

Будет интересно➡  Что такое NTC термисторы

Стрелку эмиттера удобно рассматривать как указатель полярности прямого напряжения, приложенного между базой и эмиттером, которое “открывает” (подобно выпрямительному диоду) транзистор. При использовании транзистора в электронных устройствах нужны два вывода для входного сигнала и два – для выходного.

Так как у транзистора всего лишь три вывода, один из них должен быть общим, принадлежащим одновременно и к входной, и к выходной цепи. Возможны три варианта схем включения транзисторов – с общей базой, общим эмиттером и с общим коллектором.

Переход в биполярном транзисторе.
Переход в биполярном транзисторе.

Схема с общей базой

Схема включения транзистора с общей базой (ОБ) показана на рис. 1.10. Входным сигналом для схемы с ОБ является напряжение, поданное между эмиттером и базой UBX = = UЭБ; выходным – напряжение, выделяемое на нагрузке Uвых = IкRн; входным током – ток эмиттера Iвх = IЭ; выходным током – ток коллектора Iвых = Iк.

Входное напряжение UЭБ является управляющим для транзистора, поэтому небольшое его изменение (па доли вольт) приводит к изменению тока эмиттера в очень широких пределах – практически от нуля до максимального. Максимальный ток определяется назначением транзистора (маломощные, средней мощности и большой мощности) и соответствующей конструкцией.

Так как напряжение UΚБ является обратным, величина напряжения внешнего источника Ек может в десятки раз превышать значение напряжения UЭБ. Падение напряжения, выделяемого на нагрузке, будет тем больше, чем больше ток коллектора, при этом на самом транзисторе будет падать лишь небольшое напряжение UКБ, которое будет тем меньше, чем больше ток коллектора.

Таким образом, изменение на доли вольт входного напряжения приводит к изменению напряжения на нагрузке, чуть меньшего, чем напряжение Ек. Это положение определяет усилительные свойства транзистора.

Для оценки работы транзистора и его усилительных свойств в различных схемах включения рассматривают приращения входных и вызванные ими приращения выходных величин. Рассматривая транзистор как усилитель, принято характеризовать его свойства коэффициентами усиления и значением входного сопротивления. Различают три вида коэффициентов усиления:

  • • коэффициент усиления по току КI = ΔIвых /ΔIвх;
  • • коэффициент усиления по напряжению КU = ΔUвых/ΔUвх;
  • • коэффициент усиления по мощности КР = КI • КU.

Отношение изменения входного напряжения к изменению входного тока: Rвх = ΔUвх/ΔIвх. Входное сопротивление любого усилителя приводит к искажению входного сигнала. Любой реальный источник сигнала обладает некоторым внутренним сопротивлением, и при подключении его к усилителю образуется делитель напряжения, состоящий из внутреннего сопротивления источника и входного сопротивления усилителя.

Поэтому чем выше входное сопротивление усилителя, тем большая часть сигнала будет выделяться на этом сопротивлении и усиливаться и тем меньшая его часть будет падать на внутреннем сопротивлении самого источника. Таким образом, КРБ тоже определяется соотношением сопротивлений. Так как коэффициент усиления схемы с ОБ по току КIБ оказывается меньше единицы, она применения не нашла.

Размеры биполярного транзистора.
Размеры биполярного транзистора.

Режимы работы биполярных транзисторов

Режим отсечки

Переходы закрыты, прибор не работает. Этот режим получают при обратном подключении к внешним источникам. Через оба перехода протекают обратные малые коллекторные и эмиттерные токи. Часто считается, что прибор в этом режиме разрывает цепь.

Активный инверсный режим

Является промежуточным. Переход Б-К открыт, а эмиттер-база – закрыт. Ток базы в этом случае значительно меньше токов Э и К. Усиливающие характеристики биполярного транзистора в этом случае отсутствуют. Этот режим востребован мало.

Режим насыщения

Прибор полностью открыт. Оба перехода подключаются к источникам тока в прямом направлении. При этом снижается потенциальный барьер, ограничивающий проникновение носителей заряда. Через эмиттер и коллектор начинают проходить токи, которые называют «токами насыщения».

Схемы включения биполярных транзисторов

В зависимости от контакта, на который подается источник питания, различают 3 схемы включения приборов.

С общим эмиттером

Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.

С общей базой

Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.

С общим коллектором

Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.

Схема включения биполярных транзисторов

Какие параметры учитывают при выборе биполярного транзистора?

  • Материал, из которого он изготовлен, – арсенид галлия или кремний.
  • Частоту. Она может быть – сверхвысокая (более 300 МГц), высокая (30-300 МГц), средняя – (3-30 МГц), низкая (менее 3 МГц).
  • Максимальную рассеиваемую мощность.

color=”#ccc” size=”1″ style=”margin-bottom: 30px;”>

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Принципы работы биполярного транзистора — 2 варианта его использования в различных электронных устройствах

Обычно такие процессы принято объяснять движением носителей зарядов внутри полупроводников: дырок и электронов. При этом от приложенных источников ЭДС создаются токи, циркулирующие через выводы коллектора и эмиттера.

Они зависят от приложенных напряжений Uэб и Uкб, что показывают вольт-амперной характеристикой.

При низких значениях ЭДС переходы не могут пропустить через себя электрический ток. В таком случае говорят, что электронный ключ закрыт. Для его открытия необходимо подать управляющий сигнал. Им служит определенная величина напряжения, приложенная между базой и эмиттером.

Первое назначение биполярного транзистора: это работа в качестве электронного ключа, когда он без команды блокирует протекание через себя электрического тока, а при ее поступлении — пропускает нагрузку.

Поясню практическое применение этой функции чуть подробнее.

Что такое электронный ключ на транзисторе и как он работает: 2 примера

На практике создано множество устройств, функционирующих на базе транзисторного ключа. Покажу две, которые легко повторить своими руками даже начинающему мастеру, осваивающему навыки владения паяльником.

Простейший датчик протечки воды — схема и описание для чайника

Устройство, помещающееся в спичечный коробок и автоматически оповещающее хозяина о появлении влаги на полу под раковинной или ванной, собирается из следующих пяти деталей:

  1. датчик влажности — изолированная пластина из пластика с двумя токопроводящими контактными площадками (наклеенная металлическая фольга). Они отделены друг от друга воздушным пространством. Желательно положить на кусочек марли или ватку, хорошо впитывающую пролитую воду;
  2. транзистор марки 2N5551 или его аналог;
  3. светодиод VD1;
  4. любой пьезоэлемент SP1 — звуковой преобразователь электрического сигнала, который можно взять из отслуживших свой срок электронных часов;
  5. элемент питания на 3 вольта — подойдет литиевая батарейка типа «таблетка» для часов, калькуляторов и подобных гаджетов.

Этот электронный ключ в сухом состоянии закрыт, ибо выводы его транзисторного перехода база-коллектор разомкнуты. При протечке воды создается электрический контакт между площадками датчика влажности.

Поданного напряжения от источника питания на выводы «Б» и «К» VT вполне достаточно для изменения состояния закрытого перехода. Ключ открывается, а ток в эмиттерной цепи зажигает светодиод и включает звуковое оповещение.

Более детально работа этой схемы описана в отдельной статье. Аналогичным образом работает ключ в следующей разработке.

Схема управления насосом откачки воды для повторения своими руками

Считаем, что перед нами стоит задача поддерживать объем воды в баке между нижним допустимым горизонтом (L) и верхней меткой (H) за счет включения и отключения насоса. С этой целью помещаем в бак три электрода на указанной высоте.

Провода от них подводим к соответствующим входам электрической схемы управления. Она запитывается постоянным напряжением 12 вольт (блок питания или аккумулятор).

Если воды в баке нет, то электрическая связь между контактами COM, L и N отсутствует. Транзисторы VT1, VT2 закрыты. Но +12 вольт через диод VD1 проходит на базу VT3, открывая его и, соответственно, VT4.

Последний подает напряжение на исполнительное реле KL1, которое своими контактами включает насос. Он начинает заполнять бак водой. Светодиод HL1 своими свечением сообщает о работе насоса.

В момент достижения водой уровня L происходит открытие VT1, но оно не влияет на состояние VT3. Напряжение на его базе поддерживается резистором R8.

Когда вода достигает верхнего уровня H, то срабатывает ключ VT2, чем дополнительно снижает напряжение на базе VT3 и, соответственно, VT4. Это приводит к отключению реле и насоса. Светодиод гаснет.

Насос будет обесточен до достижения нижнего уровня воды в баке. Дальше описанный алгоритм работы повторяется по циклу.

Обе схемы демонстрируют работу транзисторного ключа. Он управляется по команде, поступающей от контактных датчиков. В итоге происходит включение или отключение исполнительного органа. Выполнение других функций здесь не предусмотрено.

Регулятор тока на биполярном транзисторе: как работает схема управления

Принцип действия регулятора мне удобнее объяснять следующей картинкой его открытого состояния.

Принципиально она ничем не отличается от той, которая расположена выше и демонстрирует работу биполярного транзистора. Но здесь нагляднее и понятнее показаны процессы, протекающие по закону Ома.

Напомню, что закрытый транзистор не пропускает через себя электрический ток. Но его открытое состояние создается сразу двумя рабочими контурами:

  1. эмиттер-база, где циркулирует ток управления I1;
  2. эмиттер-коллектор с подключенной силовой схемой и током в ней I2.

Здесь действует важная закономерность: маленький ток, протекающий через базу, управляет большой нагрузкой, подключенной к цепи эмиттер-коллектор.

А делается это все за счет изменения величины напряжения между базой и змиттером при одной и той же разности потенциалов, приложенной к внешней схеме выводов коллектора и эмиттера.

Попробовал изобразить следующей картинкой принцип регулирования коллекторного тока в БТ.

Надеюсь понятно, что при низком напряжении U1 он маленький, при среднем — средний, а при повышенном — увеличенный.

Таким образом: коллекторный ток регулируется приложенным напряжением к базе при одном и том же напряжении между эмиттером и коллектором.

По этому принципу работают многочисленные блоки питания. Приведу пример одного из простых, конструкцию которого можно легко собрать своими руками.

Детали обозначены сразу на схеме. Трансформатор можно взять из старого лампового телевизора или другой техники. Не сложно его рассчитать и намотать самостоятельно. В любом случае он должен отвечать нагрузке, которая будет через него проходить.

Защиту от коротких замыканий и перегрузов выполняем простыми плавкими вставками. Диодный мостик подбираем по нагрузке. В большинстве случаев можно обойтись старыми диодами Д226.

Нас в этой конструкции интересует прежде всего принцип регулирования, осуществляемый выходным БТ КТ815. Он происходит за счет изменения положения движка потенциометра R6, который управляет потенциалом на базе транзистора КТ315 (VT1).

С выхода КТ315 потенциал подается на базу VT2. А он уже определяет выходные параметры в силовой цепи 0-12 вольт.

5 технических нюансов работы биполярных транзисторов, которые важно учитывать при проектировании и эксплуатации электронных ключей или регуляторов

Особенность №1

Электрические характеристики БТ описываются сложными формулами. Ими очень неудобно пользоваться на практике. Поэтому электронщики работают с графиками, выражающими связи между входными и выходными параметрами.

Их разделяют на два вида:

  1. статические, определяющие возможности полупроводниковых переходов по токам и напряжениям на входе и выходе при отсутствии нагрузки (режим холостого хода);
  2. выходные — зависимость тока через коллектор от приложенного выходного напряжения при конкретном токе через базу.

Каждому БТ присущи свои индивидуальные характеристики. Однако сейчас подобных полупроводников выпущено так много, что практически любому из них не сложно подобрать аналогичную замену даже от другого производителя.

Для работы транзисторов может быть использован один из следующих режимов:

  • активный (нормальный или инверсный);
  • насыщения;
  • отсечки;
  • барьерный.

Особенность №2

Любой БТ, созданный с корпусом p-n-p или n-p-n работает практически по одним и тем же алгоритмам, которые отличаются только направлением протекания положительного тока через полупроводниковые переходы.

Поэтому для прямых и обратных транзисторов создаются индивидуальные схемы управления и подключения нагрузки к выходным цепям.

В качестве примера приведу еще одну схему простого зарядного устройства, собранную на транзисторном модуле с p-n-p переходами. Можете ее сравнить с предыдущим вариантом. Увидите практически одинаковую конструкцию, но с обратным направлением тока.

Здесь деталей еще меньше, а регулирование выходных величин осуществляется за счет изменения значения напряжения, подаваемого на вход электронного модуля. Используется обыкновенный потенциометр.

Особенность №3

При открытом состоянии входной полупроводниковый переход в режим отсечки БТ имеет небольшое падение напряжения. В частном случае он составляет порядка 0,7 вольта. Чтобы зафиксировать ваше внимание на этом вопросе специально нарисовал картинку — считается, что так лучше работает человеческая память.

Другими словами: потенциал на базе на 0,7 вольта меньше, чем на эмиттере. Для кремниевых изделий он всегда составляет 0,6-0,7 В.

Особенность №4

Ток коллектора БТ определяется как ток базы, умноженный на определенно большое число постоянной величины.

Это свойство используется для классификации транзисторов по коэффициенту передачи тока при коротком замыкании на выходе.

С этой целью введен коэффициент h21.

Если выдержать показанные номиналы у приведенной схемы проверки (10 вольт у источника ЭДС и 100 килоом у сопротивления), то показания амперметра в миллиамперах просто умножаем на число 10. Получим значение коэффициента h21.

Подобные алгоритмы заложены в цифровые мультиметры и аналоговые тестеры, которые позволяют измерять коэффициент h21 при проверках БТ.

Особенность №5

При открытом состоянии потенциал внутреннего полупроводникового перехода БТ коллектора выше, чем у эмиттера. В моем частном случае он составляет 0,3 вольта.

Здесь открытый транзистор работает как обычный ключ, но он не идеален. На его внутренней схеме присутствует падение напряжения в 0,3 вольта. Однако в большинстве случаев это не критично.

Допустим, что в коллекторной цепи появилось дополнительное сопротивление. Изменение тока через этот резистор повлечет падение напряжения на нем.

Однако более высокий потенциал коллектора совместно с увеличенным током через базу могут стабилизировать выходные характеристики. В этом случае силовые токи сохраняют свое значение.

Как проверить биполярный транзистор: 2 доступные методики

Для подборки транзисторов с одинаковыми коэффициентами h21 существуют специальные пробники. Сейчас ими снабжаются обычные цифровые мультиметры. Во времена моей молодости они монтировались только на дорогих аналоговых тестерах.

Существует две методики оценки исправности транзисторов:

  1. с помощью мультиметра или тестера по замеру сопротивлений между всеми выводами (самый распространенный и доступный способ);
  2. посредством вычисления коэффициента h21 встроенным пробником.

Как проверить биполярный транзистор мультиметром или тестером: подробная инструкция с фотографиями

Если вернуться к конструкции полупроводниковых переходов, то можно сразу заметить, что наш транзистор вполне допустимо представить двумя диодами, подключенными одноименными полюсами (p или n) со своими выводами. Общая точка у них будет работать базой.

Теперь вспомним как проверяется диод: через него пропускают электрический ток в оба направления, а по его прохождению оценивают внутреннее сопротивление перехода. Если оно укладывается в норматив, то полупроводник исправен. Иная картина — брак.

Этот же принцип заложен в проверку БТ. Просто через каждую пару контактов надо пропустить ток в обе стороны, а по его изменению судить об исправности проверяемого элемента.

Для проверки нам потребуется:

  1. уточнить возможности своего мультиметра или тестера;
  2. воспользоваться справочными данными, приведенной чуть ниже;
  3. выполнить измерения.

Что надо учитывать в своем измерительном приборе

Мой старенький тестер Ц4324 имеет обозначения на своей шкале, на которые необходимо обратить внимание.

Мы будем работать на шкале kΩ. Рядом с гнездом для подключения измерительного провода стоит значок —kΩ., указывающий на потенциал минуса этого контактного гнезда. Плюс находится на противоположной левой стороне.

Эти сведения помогут нам определиться с направлением тока, который будет протекать через полупроводниковые переходы.

В роли вольтметра постоянного тока у него «плюс» находится на этой же правой клемме. Зная это, проверяю полярность мультиметра, переключив его в режим измерения Ω или прозвонки, а тестер — вольт.

На показанном фото тестер замерил напряжение мультиметра, а последний — сопротивление вольтметра. Но нас сейчас интересует другая информация:

  1. плюсовой вывод мультиметра находится на его красном щупе;
  2. минусовой — черный.

Справочные данные — кратко

Сразу замечу, что приведенные здесь параметры ориентировочные. Однако они позволяют оценивать работоспособность полупроводниковых переходов.

Исправный БТ в цепи база-коллектор и база-эмиттер в одну сторону (зависит от прямой или обратной проводимости) обладает сопротивлением на пределах омов, например, 50-1200.

В противоположном направлении ток не пропускается. Прибор покажет бесконечность: ∞ (у меня отображается как 0.L, на отдельных мультиметрах — знак 1).

При измерениях учитываем:

  1. плюсовой щуп ставится на вывод, соответствующий входу тока, а минусовой — выходу;
  2. значок ∞ обозначает, что на указанном пределе измерения мультиметр не смог определить сопротивление: оно больше (вполне возможен обрыв цепи);
  3. полученный результат около 0 Ом при замерах током через базу означает пробой перехода;
  4. величина сопротивления между коллектором и эмиттером оценивается значком ∞.

Как выполнить измерения

Работать можно тестером или мультиметром. Разницы практически особой нет. Я буду все показывать на примере своего карманного Mestek MT-102. Просто на стареньком Ц4324 мне сложнее все объяснять, а вам — разбираться.

Если у вас другой прибор и имеются затруднения с его освоением, то у меня есть статья, где обобщены и подробно изложены принципы замеров любыми цифровыми мультиметрами. Можете заходить и пользоваться.

Я знаю, что у мощных транзисторов в металлических корпусах коллектор всегда соединен с металлом корпуса.

Перевел мультиметр в режим прозвонки (можно омметра), один конец закрепил крокодилом на корпусе, а вторым щупом нашел соответствующий вывод. Замер показывает ноль.

Чтобы вам было удобнее отслеживать мои действия по фотографиям обозначил вывода чисто случайным образом:

  1. на один штырек надел короткий отрезок кембрика;
  2. на второй — длинный;
  3. третий оставил голым (коллектор).

Я проверял силовой транзистор П213А с толстыми контактами. На них просто удобно садить крокодилы, делать фотографии. Работа с маленьким изделиями и тонкими ножками выполняется аналогично. Только щупы придется оголить и не допускать создания излишних контактов.

Маркировка П213А четко обозначена на корпусе. Она позволяет заглянуть в справочник, определить по картинке в нем вывода, узнать технические характеристики, включая проводимость: прямую или обратную.

На практике часто это не выполняется: маркировка не читаема, изделие «no name». Вот этой сложной методики я и буду придерживаться, как приходится поступать чаще всего.

Выбираю один из контактов (не помеченный кембриком) и ставлю на него щуп, например, красный. На второй произвольный (длинный кембрик) подключаю черный конец. Записываю показание —196 Ом.

Переношу черный конец на вывод с коротким кембриком. Вижу очень большое сопротивление.

Меняю концы местами: на голый вывод сажу черный щуп, а на длинный — красный. Вижу высокое сопротивление.

Переношу красный конец на вывод с коротким кембриком. Замеряю 72 Ома.

Осталось два замера. Красный щуп оставляю на прежнем месте, а черный подключаю на вывод с длинным кембриком. Результат — 198 Ом.

Меняю концы местами. Голый вывод не задействован. Наблюдаю очень большое сопротивление.

Теперь остается проанализировать полученные результаты.

Мы знаем, что вывод базы является общим для обоих составных диодов. На него должны прозваниваться с величиной омов оба перехода. Это замеры №:

  • 1 (плюс или красный щуп на голом выводе, минус — на длинном кембрике);
  • 4 (минус на голом выводе, плюс — на коротком кембрике);
  • 5 (минус на длинном, плюс на коротком).

Замечаю, что общий вывод для двух замеров (1 и 5) из трех помечен длинным кембриком. На него с двух сторон проходит ток. Значит это база.

Два остальных вывода: эмиттер и коллектор. Надо их как-то различить. Методика здесь следующая: сопротивление коллектор-база всегда меньше, чем эмиттер-база. (Коллекторный ток неизбежно самый большой). Сравниваем 196 Ом в первом случае и 198 в пятом.

Получаем, что коллектор у нас ничем не помечен, что и подтвердила фотография его прозвонки на корпус. Оставшийся вывод с коротким кембриком — эмиттер.

Обращаем внимание на направление токов на базу. Они идут снаружи вовнутрь переходов (направление прямое: структура p-n-p). В обратную сторону токи не проходят: полупроводники целые.

Теперь важное замечание: маломощные транзисторы имеют очень высокое сопротивление между эмиттером и коллектором при замерах током в обе стороны.

У мощных же моделей БТ между этими выводами в одну сторону (зависит от проводимости) замеряются какие-то Омы, что мы и имеем на картинке №4.

А теперь показываю характеристики проверяемого П213А, взятые из интернет-магазина. Они помогут вам оценить результаты моей проверки.

Учтите, что эта методика позволяет определять исправность транзисторов прямо на монтажной плате без их выпаивания. Просто бывают случаи, когда полупроводниковые переходы зашунтированы низкоомными резисторами.

Они будут прозваниваться в обе стороны с низким сопротивлением. Тогда БТ придется демонтировать. Но обычно их не выпаивают: зачем лишние телодвижения.

Работайте внимательно и аккуратно. Нельзя касаться пальцами металлической части щупов. Это изменит результат замера, приведет к ошибке.

Как замерить коэффициент h21 у биполярного транзистора

Очень давно я делал небольшую коробочку с батарейкой, амперметром, набором сопротивлений, переключателем и клеммами для подключения полупроводников. После небольших манипуляций на этом устройстве замеренные токи коллекторной цепи и базы пересчитывались по формуле. Так определялся коэффициент h21.

Сейчас такие действия считаются мазохизмом. У большинства современных мультиметров, даже бюджетного класса, имеется встроенная функция для этого замера.

Пользователю достаточно выставить переключатель прибора в положение hFE, а в контактное гнездо подключить испытуемый БТ с учетом проводимости и обозначенных выводов.

Прибор автоматически отработает, покажет вычисленный им коэффициент h21.

И вот что самое интересное: даже в таком простом замере новички допускают ошибки, ибо:

  1. путают местами выводные контакты или проводимость;
  2. создают неплотное прилегание выводов в гнездах мультиметра.

Второе происходит чаще. Дело в том, все БТ выпускаются с разными толщинами контактных ножек. Надо просто подобрать диаметр проволочки под отверстие гнезда, чтобы она плотно входила в него.

Нарезать из нее несколько отрезков, подбирая удобную длину. Затем они просто напаиваются на ножки для проведения замера, как показано на фото выше.

Предлагаю посмотреть коротенькое видео, посвященное описанию работы с биполярными транзисторами.

Вот в принципе и все, что я хотел рассказать про биполярный транзистор, что такое его полупроводниковые переходы, как они работают и проверяются. Если у вас еще остались какие-то вопросы, то задавайте их в комментариях.