Сила электрического тока: что это такое, единицы

Автор: | 02.08.2021

Содержание

 

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.

Сила тока

I = q/t

I — сила тока [A]

q — заряд [Кл]

t — время [с]

Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Андре-Мари Ампер

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

два параллельных проводника

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = q/t

Подставим значения

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, через которые электрический ток проходит. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, через которые ток не проходит. Изи!

Проводники

Диэлектрики

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Направление тока от плюса к минусу

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

что такое амперметр

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

тепловой амперметр

 

 

  • 0
  • 0
  • 0
  • 0
  • 0
  • 0

Почитать что-то похожее: Закон Ома Физика

2723


Закон всемирного тяготения Физика

866


Электромагнитные волны Физика

4829


Механическая работа Физика

221


Идеальный газ Физика

1845


Инерция Физика

2229

ПродуктыПредметы Skysmartот 10 до 18 летАнглийский для подростковот 4 до 9 летАнглийский для детейс 1 классаМатематика для школьниковот 4 до 7 летДошкольная математикас 5 классаРусский языкот 6 до 13 летШахматыс 7 классаФизикаот 10 до 14 летПрограммирование на Pythonс 9 классаОбществознаниеПодготовка к ЕГЭ и ОГЭМатематикаРусский языкОбществознаниеФизикаАнглийский язык

Документы

Контакты

Делаем развитие привлекательным © Skysmart, 2021

Источники электрического тока

Чтобы получить электрический ток в проводнике, необходимо привести заряженные частицы в направленное движение. Но как получить ток, который существовал бы длительное время?

Возьмем два заряженных тела А и В, заряды которых равны по модулю, но противоположны по знаку, и соединим их проводником.

На отрицательно заряженном теле находится избыток электронов, на положительно заряженном теле – недостаток электронов. В проводнике на короткое время возникнет электрический ток. Он будет существовать до тех пор, пока не исчезнет электрическое поле.

Процесс разделения зарядов осуществляют источники электрического тока.

В источнике тока благодаря химическим или иным процессам (в зависимости от принципа его действия) происходит разделение положительно и отрицательно заряженных частиц.

Эти разделенные частицы накапливаются на так называемых полюсах источника тока.

Примерами источников тока являются аккумуляторы. Они могут быть свинцовыми(кислотными), а также широкое применение получили железно-никелевые(щелочные).

В последние десятилетия наряду с традиционными источниками тока стали широко применяться источники, изготовленные на основе химического элемента лития.

Впечатляет также разнообразие габаритов источников электричества: от миниатюрныхбатареек для питания ручных часов и до мощных аккумуляторных батарей, устанавливаемых на подводных лодках.

Электрическое напряжение

Нетрудно представить, что электрический ток подобен потоку воды в шланге. Если удерживать оба конца шланга на одном уровне, то никакого течения воды не будет.

Если же один из концов опустить вниз, то вода потечет с более высокого уровня на низкий. Разность уровней воды аналогична напряжению источника тока.

Чем выше напряжение (чем больше разница в уровнях воды), тем больше сила тока в цепи (тем быстрее движется вода в шланге).
Работу электрического поля, создающего электрический ток, называют работой тока Аэл.

Работа тока зависит от напряжения.
Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного электрического заряда из одной точки в другую и обозначают буквой U.

U=Аэл/q

Единица электрического напряжения называют вольтом.

1 В = 1Дж/Кл

Прибор, с помощью которого измеряют напряжение на полюсах источника тока или на каком-нибудь участке цепи, называют вольтметром. По внешнему виду и устройству вольтметр очень похож на амперметр.

На электрических схемах вольтметр изображают в виде кружка с буквой V.

Электрическое сопротивление

Если включать в цепь различные проводники, то сила тока будет различной.

Посмотрим на зависимость силы тока от вида проводника, включенного в цепь. Соберем цепь, состоящую из источника тока, ключа, лампочки и амперметра. Будем последовательно подсоединять проводники одинакового размера, но сделанные из разного материала: железа, меди, никеля.

Свечение лампочки и сила тока больше при подключении железного проводника, чем при включении никелевого, но меньше, чем при включении медного.

Разные проводники обладают различным сопротивлением электрическому току из-за особенностей в строении их кристаллической решетки.

Такая зависимость остается справедливой не только для металлов, но и для проводников другой природы, например электролитов.
Электрическое сопротивление – это физическая величина характеризующая способность проводника препятствовать протеканию электрического тока в этом проводнике.

Сопротивление обозначают буквой R.

Единицу сопротивления называют Ом (1 Ом). 1 Ом – это сопротивление такого проводника, в котором при напряжении на концах 1В сила тока равна 1А:

1 Ом = 1В/1А

Как возникает сила тока

Сила тока возникает из-за разности значений напряжения (или потенциалов) в начале и на конце проводника. Для поддержания разности потенциалов нужен источник энергии.

В зависимости от устойчивости показателя и направления протекания, ток бывает постоянным или переменным. Постоянный может существовать только в замкнутом контуре, в котором есть непрерывное круговое движение заряженных частиц. Например, в гальванических элементах – батарейках и аккумуляторах. В этих устройствах энергия вырабатывается благодаря химическим процессами.

Возникновение силы тока
Для возникновения постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц.

Постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного, в частности, производимого генераторами.

Выпрямляемым на подстанции током питаются все тяговые виды транспорта с плавной регулировкой движения (метро, троллейбусы и др.)

Работа электронной аппаратуры от сети переменного источника в квартирах осуществляется посредством дополнительных приборов: блоков питания с выпрямителями сигналов, стабилизаторов напряжения.

В чем она измеряется и как посчитать

Сила тока измеряется в амперах – обозначение 1 А. Ампер – одна из семи основных единиц.

1А = 1Кл/c, где Кл (или С) – это кулон, единица измерения количества электрического заряда.

Сила тока обозначается символом I (согласно первой букве французского Intensite´ du courant).

Величина ее определяется по формуле I=qn Vср S cos a, где:

  • q – сумма зарядов;
  • n – концентрация частиц;
  • Vср – средняя скорость их упорядоченного движения;
  • S – площадь проводника;
  • a – угол между вектором направления движения и вектором нормали (перпендикуляра) к поверхности проводника.

Ампер
Ампер – единица измерения силы электрического тока.

Закон Ома

Экспериментально доказано, что во сколько раз увеличивается напряжение на участке цепи, во столько же раз увеличивается и сила тока на этом участке. То есть сила тока в проводнике прямо пропорциональна напряжению на концах этого проводника.

График зависимости силы тока от напряжения будет представлять собой прямую линию, проходящую через начало координат . Его называют вольт-амперной характеристикой цепи.

Зависимость силы тока от сопротивления  показывает, что чем больше сопротивление проводника, тем меньше сила тока при одном и том же напряжении между концами проводника. Поэтому сила тока в проводнике обратно пропорциональна сопротивлению проводника

Для участка цепи величина I рассчитывается по формуле немецкого физика Георга Ома, открывшего в 1926 г. закон взаимосвязи между силой тока, напряжением и сопротивлением проводника:

I=U/R,

  • U – напряжение (или падение напряжения, или разность потенциалов), измеряется в вольтах – обозначение В или V;
  • R – сопротивление проводника, измеряется в омах – обозначение Ом или W.

Или по формуле I=UG, где обозначение G – это проводимость или электропроводность (величина, обратная сопротивлению, измеряется в сименсах, обозначение – См или S).

Расчет для полной цепи происходит по формуле I=e/R+r, где:

  • e – ЭДС или электро-движущая сила в цепи, измеряется в вольтах;
  • R – суммарное сопротивление всех приборов, включенных в цепь;
  • r – внутреннее сопротивление источника напряжения.

Сила тока зависит от электрического напряжения (или разности потенциалов, или ЭДС). В случаях, когда r<>R, можно считать, что она обратно пропорциональна либо сопротивлению цепи, либо сопротивлению источника.

Закон Ома
Закон Ома для полной цепи.

Значение I связано с показателем скорости преобразования электрической энергии – мощностью P (единицы измерения ватты -обозначение Вт или W). Для линейной цепи, в которой соблюдается закон Ома, расчет P производится по формуле:

P=IU или P=I2R=U2/R.

Значение I прямо пропорционально мощности: I=P/U. В приборах большей мощности возникает ток большей силы.

Как измерить силу тока

Эту характеристику можно измерить с помощью амперметра. Прибор последовательно подключается к электрической сети (плюс к плюсу, минус к минусу). Чем ниже сопротивление амперметра, тем меньше его влияние на измерения, и тем они точнее. Если сопротивление амперметра стремится к нулю, он нейтрален и не влияет на показатели сети.

Работа амперметра основана на магнитном действии тока. Чем больше сила тока, проходящего по катушки, тем сильнее она взаимодействует с магнитом и тем больше угол поворота стрелки амперметра.

При измерении силы тока амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить.

У каждой клеммы прибора стоит свой знак: “+” или “-“.

Клемму со знаком “+” нужно соединить с проводом, идущим от положительного полюса источника тока, а клемму со знаком “-”  – с проводом, идущим от отрицательного полюса источника тока.

На электрических схемах амперметр изображают в виде кружка с буквой А.

Виды амперметров

По конструкции амперметры бывают:

  • аналоговые (со стрелочной измерительной головкой);
  • цифровые (с индикатором).

Амперметр
Амперметр – прибор для измерения силы тока в амперах.

По способу измерения:

  1. Магнитоэлектрические, в которых отклонение чувствительной стрелки и показатели зависят от силы взаимодействия полей постоянного магнита и поля электрического тока в алюминиевой рамке, и угла поворота последней.
  2. Электромагнитные, показатели которых меняются с подвижками железного сердечника под влиянием электромагнитного поля катушки.
  3. Электродинамические, в которых отклонение стрелки связано с притяжением или отклонением подвижной катушки относительно неподвижной, соединенных последовательно или параллельно.
  4. Тепловые, в которых при нагреве электрическим током происходит изменение длины металлической нити и положения связанной с нитью измерительной стрелки.
  5. Индукционные, в которых связанный со стрелкой металлический диск отклоняется под воздействием электромагнитного поля неподвижных катушек.
  6. Детекторные, в которых магнитоэлектрический прибор соединен с выпрямителем-детектором.
  7. Термоэлектрические, которые состоят из нагревателя и магнитоэлектрического измерительного механизма.
  8. Фотоэлектрические, в которых фотоэлектрический элемент преобразует световой поток в электрический.

Магнитоэлектрические приборы определяют только силу постоянного тока, индукционные и детекторные – переменного. Фотоэлектрические высокоточные приборы работают с постоянным током и током низкой и высокой частоты.

Остальные из перечисленных подходят для разных токов.

Приборы бывают многофункциональными, т.е. действующими в разных режимах. Например, мультиметр работает и как вольтметр, и как омметр, и как мегомметр (для высоких сопротивлений).

В всех современных измерительных приборах есть переключатель диапазона чувствительности.

Правила измерения

  1. Амперметр включается в электросеть последовательно, «в разрыв цепи».
  2. При включении прибора в сеть, необходимо соблюдать полярность, присоединяя «+» прибора к «+» источника тока, а «-» к «-».
  3. Тестируемая линия при подключении должна быть обесточена. Иначе прикасание щупами прибора к проводам или контактам может вызвать короткое замыкание.
  4. При высоких напряжениях в цепь переменного тока помимо амперметра включается трансформатор или шунт, в цепь постоянного – магнитный усилитель или шунт.
  5. Тип амперметра для измерений выбирают в соответствии с типом электрического прибора или линии. Также учитывают требуемую точность показателей.

Перед подключением необходимо подробно изучить инструкцию к амперметру.

 

Напряжение, сопротивление, ток и мощность — основные электрические величины

В электротехнике не имеет смысла говорить просто «электричество». Здесь всегда необходимо конкретизировать, о чем именно идет речь. Мы можем иметь ввиду электрический заряд конденсатора, напряжение в розетке, ток текущий по проводам, либо например мощность, которую намотал за месяц электросчетчик в нашей квартире.

В любом случае, нет такой величины как электричество, есть величина «количество электричества», правильно называемая электрическим зарядом, который измеряется в кулонах. Это электрический заряд — движется по проводам, накапливается на пластинах конденсатора, периодически присутствует на клеммах (минимум — на фазном проводе) розетки, движется в форме тока при совершении электрической сетью работы. Основные электрические величины так или иначе связаны с зарядом. Об этих величинах мы сегодня и поговорим.

Напряжение, сопротивление, ток и мощность - основные электрические величины

Напряжение

Читайте также:  Характеристика индуктивности в цепи переменного тока

Электрическое напряжение U измеряется между двумя точками цепи. Чтобы в замкнутой цепи начало присутствовать устойчивое переменное или постоянное напряжение, необходим источник тока, который смог бы обеспечить поддержание этого напряжения на концах цепи. Данный источник будет служить источником ЭДС — электродвижущей силы, которая так же как и напряжение измеряется в вольтах.

Напряжение

Если к замкнутой цепи присоединен такой источник, то, во-первых, напряжение будет присутствовать между клеммами источника, то есть на концах цепи, а во-вторых, на концах всех участков данной цепи, если ее условно поделить на части.

В каждый момент времени электрическое напряжение, действующее на том или ином участке цепи, может иметь другую величину, нежели в предыдущий момент, если цепь питается от источника переменной ЭДС, либо ту же величину, если это — источник постоянной ЭДС, а цепь, соответственно, является цепью постоянного тока.

Напряжение на концах цепи постоянного тока подобно разности высот на склоне горы, а заряд в данных условиях — словно поднятая на высоту вода, только применительно к электрическому полю эта разность называется разностью электрических потенциалов, поскольку здесь не идет речи о гравитационном поле.

Разность потенциалов между двумя точками равна 1 вольту, если для перемещения заряда величиной 1 кулон из одной точки в другую над ним надо совершить работу величиной 1 джоуль. Вольт также равен электрическому напряжению, вызывающему в электрической цепи постоянный ток величиной в 1 ампер при мощности в 1 ватт, но об этом далее.

Ток

Когда на концах участка цепи (проводника) присутствует электрическое напряжение, то есть когда имеет место разность электрических потенциалов, — это значит, что в проводнике (по длине рассматриваемого участка) действует электрическое поле. Электрическое поле действует силовым образом на заряженные частицы.

В металлах, например, свободные электроны являются носителями отрицательного заряда, и могут приходить в поступательное движение, если вдруг оказываются во внешнем электрическом поле, источником которого служит в данном случае источник ЭДС. Когда электроны приходят в движение под действием электрического поля, они становятся движущимся зарядом, то есть электрическим током I.

Количество заряда измеряется в кулонах, а ток характеризует скорость перемещения заряда через поперечное сечение проводника (за единицу времени). Когда через поперечное сечение проводника за одну секунду проходит электрический заряд в один кулон, ток в проводнике равен 1 амперу. В аналогии с водой — чем больше воды проходит через сечение трубы за секунду — тем больше ток.

Сопротивление

Под действием электрического напряжения, заряд движется через поперечное сечение проводника, образуя ток, но движется он не беспрепятственно. Поскольку мы начали рассматривать металлический проводник, то с ним и продолжим.

Электроны в проводнике, двигаясь под действием электрического поля, натыкаются на препятствия внутри проводника — на атомы кристаллической решетки, а также друг на друга, из-за хаотической составляющей (тепловой) движения электронов и колебаний атомов.

Эти препятствия оказывают своего рода сопротивление, замедляют электроны, уменьшают ток по сравнению с тем, до какой величины он мог бы развиться если бы этих препятствий не было. Но такого рода сопротивление R в реальных проводниках (цепях) всегда есть.

Данная величина называется в электротехнике электрическим сопротивлением. Электрическое сопротивление измеряется в омах. Один Ом равен электрическому сопротивлению участка электрической цепи, между концами которого протекает постоянный электрический ток величиной в 1 ампер при напряжении на концах 1 вольт.

Читайте также:  В каких единицах измеряется освещенность — список основных

Чем больше сопротивление, характеризующее данный проводник, тем меньшим будет ток при одном и том же напряжении на концах этого проводника. Данная зависимость называется законом Ома для участка электрической цепи: величина тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Мощность

Говоря об электрической цепи, напряжении, сопротивлении и токе, нельзя не завершить тему основных электрических величин рассказом об электрической мощности P. Когда под действием напряжения в цепи устанавливается и продолжает течь ток, источник ЭДС совершает работу A над цепью.

По сути, работа совершается электрическим полем над электрическим зарядом, который в этом поле перемещается. Количество совершенной работы зависит от разности потенциалов, которую преодолел заряд и от величины этого заряда. Чем быстрее выполнялась работа — тем выше мощность процесса.

Мощность

В случае с током мы говорим обычно о мощности источника, выполнившего работу, а также о мощности потребителя (цепи). Электрическая мощность, потраченная на совершение полезной работы, измеряется в ваттах. Для любого вида энергии, не только для электрической, 1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль.

 

Нелинеые и линейные цепи

В первых присутствует минимум один элемент, у которого существует зависимость параметров от тока, текущего по ним, и прикладываемого напряжения.

Во втором случае, ни одна характеристика составляющих цепь элементов, от вида тока, текущего по ним, и его величины не зависит. Кроме этого, в самих цепях различают внешние части и внутренние.

К первой принадлежит источник электроэнергии, а к внешней – провода, включатели и выключатели, измерительные приборы, т.е. все подсоединенное к источнику при помощи зажимов. Ток может течь исключительно по замкнутой цепи. Если же в каком-либо месте возникает разрыв, он прекращается.

Цепи еще бывают постоянного тока, т.е. в для которых не свойственно изменение направления тока (полярность источников ЭДС постоянна), и переменного, для которых характерно изменение во времени протекающего тока.

В цепях выступать источниками питания могут быть: аккумуляторы, электромеханические генераторы и термоэлектрические, фотоэлементы и гальванические. У них сопротивление внутреннее настолько мало, по отношению к другим нагрузкам, что им можно пренебречь.

Приемниками постоянного тока служат осветительные приборы, электромоторы, преобразующие в механическую электрическую энергию, и др.

К оборудованию вспомогательному относят:

  • рубильник;
  • приборы для измерения различных параметров (вольтметры и амперметры);
  • элементы защиты типа плавких предохранителей.

Для всех электроприемников важны два параметра – напряжение на их зажимах и мощность. Элементы, составляющие электрическую цепь, могут быть активными, т.е. индуцирующими ЭДС (моторы, аккумуляторные батареи) и пассивными (провода, резисторы, конденсаторы, катушки индуктивности).

Единица измерения силы тока

Электрические параметры изучают в рамках школьных программ. После экзаменов быстро забываются научные определения и формулы. Между тем, базовые знания в соответствующей области нужны не только специалистам и радиолюбителям. Они пригодятся обычным пользователям для подключения бытовой техники, решения других практических задач. В этой публикации рассказано о том, что такое единица силы тока.

 

 

Об электрическом токе

Для облегчения понимания темы можно применить аналоги (сравнения) из окружающего мира. Электрические величины иногда объясняют на примере обычного трубопровода:

  • ток электронов подобен движению жидкости;
  • напряжение (разница потенциалов) – различные уровни давления;
  • при уменьшении сечения проводника увеличивается сопротивление току – таким же образом приходится повышать напор для перемещения большего количества воды за единицу времени.

Через прозрачные стенки можно наблюдать движение потока жидкости. Упростит визуальный эксперимент наличие визуальных маркеров – загрязнений. Однако самый зоркий человек не в состоянии увидеть перемещение микроскопически малых электронов.

Тем не менее, именно движение потока заряженных частиц является электрическим током. Почему такое действие даже при продолжительном времени опыта не изменяет массу (размеры) отдельных участков проводника?

Как и в случае с наблюдением, ответ на вопрос объясняется очень малой величиной рассматриваемых параметров. Электроны можно сравнить с муравьями. При переселении в другой «дом» старый муравейник сохраняет размеры (форму). Так и масса проводника не изменится заметно даже при полном удалении из него частиц с электрическими зарядами.

 

Что такое единица измерения силы тока

Ниже отмечены основные параметры типичной электрической цепи (в скобках приведены стандартные обозначения для формул и сокращенные наименования):

  • единицы измерения силы тока (I) – Амперы (А);
  • напряжения (U) – Вольты (В);
  • сопротивления (R) – Омы (Ом).

Для полноты изучения необходимо вспомнить о количественном показателе, мощности (W). Ее измеряют в Ваттах (Вт).

Если продолжить аналог с водой, можно сделать несколько важных промежуточных выводов. Чтобы пропустить больше жидкости (электронов) увеличивают диаметр трубы (проводника). Это решение сопровождается увеличением тока. Напряжение измеряют разницей потенциалов между двумя точками цепи. Для его увеличения изменяют нужным образом соотношение зарядов.

Сопротивление препятствует прохождению электронов. Этот процесс сопровождается преобразованием электрической энергии в тепловую. В некоторых устройствах данная особенность выполняет полезные функции.

Нагревательный элемент в бойлере отличается высоким сопротивлением (R)

Потребляемую мощность можно сравнить с количеством воды, которая поступает через определенное сечение транспортной системы за единицу времени.

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение проводников

параллельное соединение резисторов

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

Если же мы имеем только два параллельно соединенных проводника

параллельное соединение двух резисторов

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

делитель тока

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

Ампер – единица измерения силы тока в СИ

По самому популярному международному стандарту (СИ) силе постоянного тока один ампер (1А) соответствует прохождение единичного заряда (1 кулон) за время 1 с:

Другое базовое определение создано с дополнительным использованием механических составляющих. В соответствии с ним, аналогичный ток создает силу взаимодействия 2*10-7 Ньютонов на каждый метр погонный конструкции, состоящей из двух параллельных проводников. Подразумевается размещение такого устройства в нейтральной среде (вакууме), полностью изолированной от внешних электромагнитных излучений.

Формулы для вычисления характеристик тока

Если к проводнику подключить источник постоянного тока, базовые параметры можно вычислить с помощью классической формулы. Ток в амперах равен напряжению в вольтах, деленному на электрическое сопротивление в омах:

Зависимость от мощности отображается следующим образом:

Простым преобразованием вычисляют другие величины:

  • R=U/I=U2/P=P/I2;
  • U= √P*R=I*R=P/U;
  • P=I2*R=U2/I=U*I.

Графическое представление основных формул

К сведению. В цепях переменного тока учитывают синусоидальную форму сигнала. Активные нагрузки (конденсаторы, катушки) создают фазовый сдвиг между напряжением и током.

Примеры расчётов закона Ома

Давайте, найдём напряжение, если ток равен 0,9 Ампер, а сопротивление 100 Ом, пользуясь треугольником, прикрываем напряжение рукой, смотрим, вертикальная черта, значит умножить. Опять пользуемся той формулой, только подставляем числа, U = 0,9 А * 100 Ом, считаем, получиться 90, значит U = 90 вольт.

Теперь рассчитываем сопротивление, берём те же единицы, только убираем сопротивление, получиться вот такая формула: R = 90 В 0,9 А, получим 100 Ом.

Чтобы рассчитать ток, опять же убираем ток, получаем эту формулу I = 90 В 100 Ом, получаем 0,9 Ампер. Итак, на этом всё, кстати, закон Ома действует там, где нет катушек индуктивности и конденсаторов, не забивайте голову конденсаторами и катушками индуктивности, просто, запомните, что закон Ома действует, там, где нет катушек индуктивности и конденсаторов. Надеюсь, моя статья была полезной, всем удачи, с вами был Дмитрий Цывцын.

Влияние силы тока на разные материалы

Одна и та же сила тока оказывает разное влияние при прохождении через различные материалы. Металлы, например, отличаются хорошей проводимостью. Примеси повышают сопротивление, поэтому для улучшения экономических показателей линии электропередач создают из хорошо очищенной меди. Полимерные соединения – диэлектрики, их часто используют для создания изоляции.

Вода проводит электрический ток, благодаря находящимся в ней ионам. Это свойство используют для фильтрации, создания тонких покрытий и автономных источников питания. Достаточно опустить в жидкость пластины с разноименными зарядами, чтобы обеспечить перемещение частиц в противоположных направлениях.

Слабым электрическим током стимулируют мозговую деятельность, оказывают стимулирующее воздействие на кожные покровы. Специализированные аппараты применяют в медицинских учреждениях и салонах красоты. Сильный ток опасен для человека, поэтому при работе с электричеством следует применять соответствующие средства защиты.

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, через которые электрический ток проходит. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, через которые ток не проходит. Изи!
Проводники Диэлектрики
Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Электричество

Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.

Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.

Данное явление называется статическим электричеством. Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.

Как увидеть статическое электричество

Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.

Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.

Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10 -19

Кл (Кулон). Обозначается
е
или
е –
.

Напряжение

Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Единица измерения напряжения – Вольт (В

или
V
). В формулах и расчетах напряжение обозначается буквой
V
. Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд, высота водяного столба (давление) – это напряжение, а скорость потока воды – это электрический ток.

Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.

Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).

Электрический ток

Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.

Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!

Единица измерения силы тока – Ампер (А

). В формулах и расчетах сила тока обозначается буквой
I
. Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·10 18 электронов) за 1 секунду.

Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.

Разная скорость потоков – разная сила тока

Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление.

Одинаковая скорость потоков – одинаковая сила тока

Читайте также:  Устройство аккумулятора — что внутри и как работает

Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.

Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение. Максимальные и минимальные значения (на графике обозначены как Io

) – это
амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.

График переменного и постоянного токов

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

что такое амперметр

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

Сопротивление

Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом

или греческой буквой омега
Ω
). В формулах и расчетах сопротивление обозначается буквой
R
. Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.

Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.

На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.

Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников – это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение проводников

последовательное соединение резисторов

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

общее сопротивление при последовательном соединении

Получается, можно записать, что

формула при последовательном соединении резисторов

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

общее сопротивление

показать на реальном примере с помощью мультиметра Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

задача на закон ома

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?

падение напряжения на резисторе

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

Мощность

Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.

Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.

Единица измерения мощности – Ватт (обозначается Вт

или
W
). В формулах и расчетах мощность обозначается буквой
P
. Для цепей переменного тока применяется термин
Полная мощность, единица измерения – Вольт-ампер (В·А
или
V·A
), обозначается буквой
S
.

И в завершение про Электрическую цепь. Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.

Электрическая цепь на примере фонарика

Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U

(В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями
R
(Ом) от плюса к минусу течет электрический ток
I
(А) заставляющий светиться лампочку мощностью
P
(Вт). Не обращайте внимания на яркость лампы, это из-за плохого давления и малого потока воды батареек.

Фонарик, что представлен на фотографии, собран на базе конструктора « Знаток ». Данный конструктор позволяет ребенку в игровой форме познать основы электроники и принцип работы электронных компонентов. Поставляется в виде наборов с разным количеством схем и разного уровня сложности.

Математическое выражение переменного тока

Переменный ток можно выразить математически с помощью уравнения:

где ω — угловая частота, равная

По этому уравнению можно найти мгновенное значение переменного тока в любой момент времени t. Величина ωt, стоящая под знаком синуса, определяет эти мгновенные значения тока и является фазовым углом (или фазой). Он выражается в радианах или градусах.

Для переменного синусоидального напряжения или для ЭДС можно написать такие же уравнения:

Во всех приведенных уравнениях вместо синуса можно поставить косинус. Тогда начальному моменту (при t = 0) будет соответствовать амплитудная фаза, а не нулевая.

Воспользуемся уравнением переменного тока для определения мощности этого тока и для доказательства соотношения между амплитудными и действующими значениями.

Мгновенная мощность переменного тока, т. е. его мощность в любой момент времени, равна

представим выражение для мощности в следующем виде:

Полученная формула показывает, что мощность колеблется с двойной частотой. Это нетрудно понять. Ведь мощность при постоянном сопротивлении R определяется только величиной тока i и не зависит от направления тока. Сопротивление нагревается при любом направлении тока. Формула мощности отражает это тем, что i 2 всегда является величиной положительной независимо от знака тока. Следовательно, за один период мощность дважды становится равной нулю (когда i = 0) и дважды достигает максимального значения (при i = Im и i = —Im), т. е. изменяется с удвоенной частотой по сравнению с частотой самого тока.

Найдем теперь среднее значение (т. е. среднее арифметическое) мощности переменного тока за один период. Среднее значение cos ωt за один период (или за целое число периодов) равно нулю, так как косинус принимает за один полупериод ряд положительных значений, а за другой полупериод — точно такие же отрицательные значения. Ясно, что среднее арифметическое всех этих значений равно нулю, а выражение Im 2 R/2 является величиной постоянной. Оно и представляет собой среднюю мощность переменного тока за один полупериод или за целое число полупериодов

Если представить, что Im2/2 есть квадрат действующего значения переменного тока I, т. е. написать I 2 = Im 2 /2, то отсюда получим:

Приведенные выше соотношения можно проиллюстрировать. На рис. 1 даны графики переменного тока i и его мгновенной мощности р.

Рис. 1. Изменение мгновенной мощности переменного тока за один период

Графики мощности показывают, что величина р действительно колеблется с удвоенной частотой в пределах от 0 до Im 2 R, а среднее значение мощности, отмеченное жирной штриховой линией, равно Im 2 R/2

 

Главные характеристики тока.

1. Сила тока обозначатся буквой I — она равна количеству электричества Q, проходящему через проводник за время t.

I=Q/t

Сила тока определяется амперметром.

2. Напряжение U — равняется разности потенциалов на участке цепи.

Напряжение определяется вольтметром.

3. Сопротивление R проводящего материала.

 

Сопротивление зависит:

а) от сечения проводника S, от его длины l и материала (обозначается удельным сопротивлением проводника ρ);

R=pl/S

б) от температуры t°С (или Т): R = R0 (1 + αt),

  • где R0 – сопротивление проводника при 0°С,
  • α – температурный коэффициент сопротивления;

 

в) для получения различных эффектов, проводники могут соединяться как параллельно, так и последовательно.

 

Таблица характеристик тока.

Соединение

Последовательное

Параллельное

Сохраняющаяся величина

I1 = I2 = … = In I = const

U1 = U2 = …Un U = const

Суммируемая величина

напряжение

cила тока

 

Результирующее сопротивление

 

 

4. Плотность тока j — величина, которую можно определить, посчитав силу тока I протекающего через единицу площади поперечного сечения S проводника:

j=I/S

5. Электрическая сила (ЭДС) e — величина, которая определяется затраченными усилиями сторонних сил Аст по перемещению единичного положительного заряда q:

e=Aст/q

Величина, равная затраченной работе совершаемой сторонними силами по перемещению положительного заряда вдоль всей цепи, включая и источник тока, к заряду, имеет название электродвижущая сила источника тока (ЭДС):

e=Aст/q

Характеристики тока обязательно надо знать при ремонте электрооборудования.